[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 260, 14 ] =
SDD(C_65(1,14)).
(I) Following is a form readable by MAGMA:
g:=Graph<260|{ {130, 155}, {128, 171}, {130, 174}, {129, 189}, {129, 190}, {129,
199}, {130, 223}, {129, 226}, {128, 228}, {128, 238}, {128, 251}, {130, 249},
{4, 132}, {102, 230}, {31, 159}, {14, 142}, {6, 134}, {5, 133}, {2, 131}, {122,
251}, {112, 241}, {1, 131}, {125, 255}, {110, 236}, {9, 139}, {75, 201}, {11,
136}, {15, 140}, {1, 133}, {36, 160}, {77, 201}, {1, 132}, {101, 224}, {14,
139}, {12, 137}, {8, 141}, {3, 134}, {2, 135}, {70, 195}, {8, 142}, {22, 144},
{71, 193}, {9, 142}, {36, 163}, {31, 152}, {23, 144}, {13, 138}, {2, 138}, {123,
243}, {120, 240}, {105, 225}, {104, 224}, {20, 156}, {18, 154}, {3, 139}, {77,
197}, {83, 219}, {1, 136}, {111, 230}, {109, 228}, {30, 151}, {28, 149}, {26,
147}, {24, 145}, {3, 137}, {127, 245}, {100, 238}, {91, 209}, {21, 159}, {20,
158}, {17, 155}, {58, 176}, {59, 177}, {63, 181}, {68, 206}, {72, 194}, {84,
222}, {4, 143}, {110, 229}, {108, 231}, {29, 150}, {25, 146}, {7, 140}, {81,
218}, {87, 219}, {113, 253}, {99, 239}, {10, 135}, {95, 210}, {46, 163}, {39,
170}, {35, 174}, {33, 172}, {21, 152}, {16, 158}, {121, 247}, {108, 226}, {99,
237}, {47, 161}, {22, 152}, {19, 157}, {18, 156}, {60, 178}, {61, 179}, {70,
200}, {75, 197}, {27, 148}, {94, 209}, {81, 222}, {82, 221}, {85, 218}, {2,
146}, {111, 255}, {108, 252}, {100, 244}, {3, 147}, {39, 182}, {123, 234}, {89,
200}, {53, 164}, {57, 168}, {87, 198}, {69, 215}, {123, 233}, {108, 254}, {4,
151}, {92, 207}, {49, 162}, {22, 133}, {7, 148}, {87, 196}, {32, 180}, {109,
249}, {98, 246}, {50, 166}, {42, 190}, {41, 189}, {40, 188}, {66, 214}, {71,
211}, {73, 221}, {5, 144}, {49, 164}, {82, 199}, {41, 191}, {125, 235}, {66,
212}, {6, 145}, {90, 205}, {56, 175}, {53, 162}, {43, 188}, {42, 189}, {14,
150}, {112, 232}, {102, 254}, {23, 143}, {62, 166}, {76, 213}, {55, 173}, {125,
231}, {98, 248}, {96, 250}, {89, 195}, {51, 168}, {105, 242}, {102, 253}, {38,
186}, {113, 237}, {39, 187}, {5, 152}, {124, 225}, {91, 198}, {54, 171}, {52,
169}, {46, 179}, {44, 177}, {16, 141}, {8, 149}, {7, 154}, {45, 179}, {110,
240}, {93, 195}, {47, 177}, {6, 153}, {40, 183}, {9, 150}, {80, 240}, {95, 255},
{115, 210}, {27, 185}, {90, 248}, {48, 146}, {75, 233}, {4, 167}, {24, 187},
{71, 228}, {72, 235}, {75, 232}, {85, 246}, {19, 183}, {114, 214}, {46, 138},
{34, 134}, {28, 184}, {77, 233}, {78, 234}, {79, 235}, {16, 181}, {121, 220},
{101, 192}, {29, 184}, {77, 232}, {17, 182}, {114, 213}, {47, 136}, {78, 233},
{83, 244}, {74, 226}, {127, 215}, {124, 212}, {79, 231}, {23, 190}, {34, 139},
{68, 237}, {76, 229}, {10, 160}, {15, 165}, {14, 164}, {11, 161}, {10, 161},
{92, 247}, {34, 137}, {62, 149}, {84, 248}, {109, 193}, {90, 246}, {89, 245},
{5, 168}, {122, 215}, {103, 202}, {97, 204}, {9, 164}, {7, 170}, {74, 231}, {8,
166}, {13, 163}, {12, 162}, {6, 169}, {124, 211}, {98, 205}, {73, 230}, {31,
175}, {62, 142}, {76, 252}, {79, 255}, {34, 147}, {48, 131}, {62, 141}, {70,
245}, {64, 244}, {73, 253}, {74, 254}, {80, 229}, {74, 252}, {115, 197}, {48,
135}, {73, 254}, {35, 155}, {97, 217}, {96, 216}, {32, 153}, {119, 206}, {105,
208}, {104, 209}, {101, 220}, {99, 218}, {95, 230}, {36, 157}, {68, 253}, {10,
176}, {126, 196}, {118, 204}, {112, 202}, {48, 138}, {37, 159}, {21, 175}, {20,
174}, {17, 171}, {11, 177}, {15, 180}, {116, 207}, {107, 208}, {102, 221}, {33,
154}, {72, 243}, {80, 236}, {81, 237}, {17, 172}, {111, 210}, {99, 222}, {33,
156}, {24, 165}, {78, 243}, {82, 239}, {83, 238}, {12, 178}, {109, 211}, {94,
224}, {25, 167}, {22, 168}, {19, 173}, {18, 172}, {13, 179}, {69, 251}, {71,
249}, {81, 239}, {92, 227}, {127, 192}, {113, 206}, {100, 219}, {96, 223}, {11,
203}, {122, 186}, {49, 241}, {28, 220}, {13, 205}, {12, 204}, {67, 131}, {15,
206}, {121, 184}, {116, 181}, {106, 171}, {88, 153}, {45, 236}, {26, 219}, {86,
151}, {19, 208}, {127, 188}, {119, 180}, {50, 241}, {30, 221}, {25, 218}, {57,
250}, {53, 241}, {118, 178}, {87, 147}, {37, 224}, {126, 187}, {117, 176}, {63,
250}, {82, 151}, {67, 133}, {124, 186}, {107, 173}, {106, 172}, {38, 225}, {67,
132}, {85, 146}, {42, 226}, {113, 185}, {97, 169}, {58, 242}, {27, 210}, {103,
174}, {51, 250}, {59, 242}, {88, 145}, {115, 185}, {55, 252}, {67, 136}, {29,
209}, {54, 251}, {114, 191}, {93, 144}, {91, 150}, {65, 140}, {84, 153}, {56,
247}, {114, 189}, {60, 243}, {51, 227}, {61, 236}, {54, 228}, {119, 165}, {93,
143}, {55, 229}, {86, 132}, {39, 244}, {23, 195}, {118, 162}, {117, 161}, {36,
240}, {65, 148}, {117, 160}, {96, 181}, {112, 166}, {31, 200}, {60, 235}, {32,
248}, {120, 160}, {54, 238}, {30, 199}, {105, 176}, {86, 143}, {35, 249}, {50,
232}, {57, 227}, {18, 201}, {126, 165}, {120, 163}, {56, 227}, {49, 234}, {29,
198}, {58, 225}, {65, 154}, {24, 196}, {107, 183}, {106, 182}, {26, 198}, {21,
200}, {20, 202}, {44, 242}, {43, 245}, {27, 197}, {26, 196}, {88, 134}, {16,
207}, {53, 234}, {63, 223}, {84, 180}, {76, 173}, {55, 213}, {46, 205}, {93,
190}, {91, 184}, {59, 216}, {47, 203}, {61, 217}, {37, 192}, {120, 157}, {89,
191}, {63, 216}, {115, 148}, {33, 201}, {58, 208}, {116, 158}, {64, 170}, {28,
247}, {43, 192}, {65, 170}, {121, 149}, {42, 199}, {52, 217}, {44, 193}, {25,
246}, {126, 145}, {45, 194}, {30, 239}, {106, 155}, {88, 169}, {86, 167}, {38,
212}, {117, 135}, {57, 203}, {85, 167}, {92, 175}, {44, 216}, {45, 217}, {38,
211}, {66, 183}, {64, 182}, {107, 157}, {56, 207}, {50, 202}, {52, 204}, {51,
203}, {37, 220}, {116, 141}, {103, 158}, {70, 191}, {59, 193}, {101, 159}, {72,
178}, {64, 187}, {119, 140}, {103, 156}, {35, 223}, {43, 215}, {41, 213}, {40,
212}, {68, 185}, {32, 222}, {40, 214}, {60, 194}, {66, 188}, {41, 214}, {118,
137}, {61, 194}, {69, 186}, {52, 260}, {69, 258}, {78, 259}, {79, 256}, {80,
256}, {83, 257}, {94, 258}, {95, 259}, {90, 260}, {94, 257}, {97, 260}, {100,
257}, {98, 260}, {104, 257}, {104, 258}, {111, 259}, {110, 256}, {122, 258},
{123, 259}, {125, 256} }>;
(II) A more general form is to represent the graph as the orbit of {130, 155}
under the group generated by the following permutations:
a: (42, 129) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (39, 64)
c: (68, 113)
d: (13, 46)
e: (37, 101)
f: (63, 96)
g: (36, 120)
h: (32, 84)
m: (49, 53)
n1: (24, 126)
a1: (38, 124)
b1: (83, 100)
c1: (12, 118)
d1: (5, 22)
e1: (25, 85)
f1: (2, 48)
g1: (40, 66)
h1: (30, 82)
m1: (9, 14)
n2: (69, 122)
a2: (11, 47)
b2: (4, 86)
c2: (71, 109)
d2: (80, 110)
e2: (18, 33)
f2: (15, 119)
g2: (28, 121)
h2: (55, 76)
m2: (50, 112)
n3: (74, 108)
a3: (35, 130)
b3: (3, 34)
c3: (94, 104)
d3: (1, 2, 13, 45, 60, 78, 75, 18, 17, 54, 69, 43, 70, 23, 4, 25, 90, 52, 12,
49, 50, 20, 35, 71, 38, 40, 41, 42, 30, 81, 32, 6, 3, 9, 8, 16, 63, 44, 58, 19,
55, 74, 73, 68, 15, 24, 26, 29, 28, 56, 51, 11, 10, 36, 80, 79, 95, 27, 7, 39,
83, 94, 37, 21, 5)(14, 62, 116, 96, 59, 105, 107, 76, 108, 102, 113, 119, 126,
87, 91, 121, 92, 57, 47, 117, 120, 110, 125, 111, 115, 65, 64, 100, 104, 101,
31, 22, 67, 48, 46, 61, 72, 123, 77, 33, 106, 128, 122, 127, 89, 93, 86, 85, 98,
97, 118, 53, 112, 103, 130, 109, 124, 66, 114, 129, 82, 99, 84, 88, 34)(131,
138, 179, 194, 243, 233, 201, 172, 171, 251, 215, 245, 195, 143, 167, 246, 260,
204, 162, 241, 202, 174, 249, 211, 212, 214, 189, 199, 239, 222, 153, 134, 139,
142, 141, 181, 216, 242, 208, 173, 252, 254, 253, 206, 165, 196, 198, 184, 247,
227, 203, 161, 160, 240, 256, 255, 210, 148, 170, 244, 257, 224, 159, 152,
133)(132, 146, 205, 217, 178, 234, 232, 156, 155, 228, 186, 188, 191, 190, 151,
218, 248, 169, 137, 164, 166, 158, 223, 193, 225, 183, 213, 226, 221, 237, 180,
145, 147, 150, 149, 207, 250, 177, 176, 157, 229, 231, 230, 185, 140, 187, 219,
209, 220, 175, 168, 136, 135, 163, 236, 235, 259, 197, 154, 182, 238, 258, 192,
200, 144)
e3: (56, 92)
f3: (79, 125)
g3: (78, 123)
h3: (26, 87)
m3: (54, 128)
n4: (73, 102)
a4: (41, 114)
b4: (20, 103)
c4: (70, 89)
d4: (10, 117)
e4: (17, 106)
f4: (2, 4)(3, 7)(5, 11)(6, 15)(8, 20)(9, 18)(10, 23)(12, 27)(13, 30)(14, 33)(17,
29)(19, 41)(21, 44)(22, 47)(26, 39)(28, 35)(31, 59)(34, 65)(36, 42)(37, 71)(38,
43)(45, 73)(46, 82)(48, 86)(49, 75)(52, 68)(53, 77)(54, 94)(56, 63)(58, 70)(60,
95)(61, 102)(62, 103)(64, 87)(72, 111)(74, 80)(81, 90)(88, 119)(89, 105)(91,
106)(92, 96)(93, 117)(97, 113)(98, 99)(101, 109)(104, 128)(107, 114)(108,
110)(115, 118)(120, 129)(121, 130)(124, 127)(131, 132)(133, 136)(134, 140)(135,
143)(137, 148)(138, 151)(139, 154)(141, 158)(142, 156)(144, 161)(145, 165)(146,
167)(147, 170)(149, 174)(150, 172)(152, 177)(153, 180)(155, 184)(157, 189)(159,
193)(160, 190)(162, 197)(163, 199)(164, 201)(166, 202)(168, 203)(169, 206)(171,
209)(173, 213)(175, 216)(176, 195)(178, 210)(179, 221)(181, 207)(182, 198)(183,
214)(185, 204)(186, 215)(187, 196)(188, 212)(191, 208)(192, 211)(194, 230)(200,
242)(205, 239)(217, 253)(218, 246)(219, 244)(220, 249)(222, 248)(223, 247)(224,
228)(225, 245)(226, 240)(227, 250)(229, 252)(231, 256)(232, 241)(233, 234)(235,
255)(236, 254)(237, 260)(238, 257)(243, 259)(251, 258)
g4: (27, 115)
h4: (23, 93)
m4: (21, 31)
n5: (44, 59)
a5: (52, 97)
b5: (81, 99)
c5: (8, 62)
d5: (51, 57)
e5: (19, 107)
f5: (43, 127)
g5: (45, 61)
h5: (58, 105)
m5: (2, 5)(3, 9)(4, 11)(6, 8)(7, 18)(10, 23)(12, 29)(13, 21)(14, 34)(15, 20)(16,
32)(17, 27)(19, 41)(22, 48)(24, 50)(25, 51)(26, 49)(28, 52)(30, 44)(31, 46)(33,
65)(35, 68)(36, 70)(37, 45)(38, 74)(39, 75)(40, 55)(42, 58)(43, 80)(47, 86)(53,
87)(54, 95)(56, 90)(57, 85)(59, 82)(60, 94)(61, 101)(62, 88)(63, 81)(64, 77)(66,
76)(69, 79)(71, 73)(72, 104)(78, 83)(84, 116)(89, 120)(91, 118)(92, 98)(93,
117)(96, 99)(97, 121)(100, 123)(102, 109)(103, 119)(105, 129)(106, 115)(107,
114)(108, 124)(110, 127)(111, 128)(112, 126)(113, 130)(122, 125)(131, 133)(132,
136)(134, 142)(135, 144)(137, 150)(138, 152)(140, 156)(141, 153)(143, 161)(145,
166)(146, 168)(147, 164)(148, 172)(149, 169)(151, 177)(155, 185)(157, 191)(158,
180)(159, 179)(160, 195)(162, 198)(163, 200)(165, 202)(167, 203)(170, 201)(171,
210)(173, 214)(174, 206)(175, 205)(176, 190)(178, 209)(181, 222)(182, 197)(183,
213)(184, 204)(186, 231)(187, 232)(188, 229)(189, 208)(192, 236)(193, 221)(194,
224)(196, 241)(199, 242)(207, 248)(211, 254)(212, 252)(215, 256)(216, 239)(217,
220)(218, 250)(219, 234)(223, 237)(225, 226)(227, 246)(228, 230)(233, 244)(235,
258)(238, 259)(240, 245)(243, 257)(247, 260)(249, 253)(251, 255)
n6: (95, 111)
a6: (60, 72)
b6: (90, 98)
c6: (29, 91)
d6: (75, 77)
e6: (16, 116)
f6: (7, 65)
C4[ 260, 14 ]
260
-1 132 133 136 131
-2 135 146 138 131
-3 134 147 137 139
-4 132 143 167 151
-5 133 144 168 152
-6 134 145 169 153
-7 154 148 170 140
-8 166 149 141 142
-9 139 150 142 164
-10 176 135 160 161
-11 177 136 203 161
-12 178 137 204 162
-13 179 138 205 163
-14 139 150 142 164
-15 165 180 140 206
-16 158 181 141 207
-17 155 171 182 172
-18 154 156 201 172
-19 157 183 173 208
-20 156 158 202 174
-21 200 159 152 175
-22 133 144 168 152
-23 143 144 190 195
-24 165 187 145 196
-25 167 146 246 218
-26 198 147 196 219
-27 210 148 185 197
-28 220 247 149 184
-29 198 209 150 184
-30 199 221 151 239
-31 200 159 152 175
-32 222 180 248 153
-33 154 156 201 172
-34 134 147 137 139
-35 155 223 249 174
-36 157 160 163 240
-37 220 224 159 192
-38 211 212 225 186
-39 187 244 170 182
-40 188 212 214 183
-41 189 191 213 214
-42 199 189 190 226
-43 188 245 192 215
-44 242 177 193 216
-45 179 236 194 217
-46 179 138 205 163
-47 177 136 203 161
-48 135 146 138 131
-49 234 162 164 241
-50 166 232 202 241
-51 168 203 227 250
-52 169 204 260 217
-53 234 162 164 241
-54 171 238 228 251
-55 213 173 229 252
-56 247 227 207 175
-57 168 203 227 250
-58 176 242 225 208
-59 242 177 193 216
-60 243 178 235 194
-61 179 236 194 217
-62 166 149 141 142
-63 223 181 216 250
-64 187 244 170 182
-65 154 148 170 140
-66 188 212 214 183
-67 132 133 136 131
-68 253 237 206 185
-69 258 215 251 186
-70 200 245 191 195
-71 211 193 249 228
-72 243 178 235 194
-73 253 221 254 230
-74 231 254 226 252
-75 232 233 201 197
-76 213 173 229 252
-77 232 233 201 197
-78 243 233 234 259
-79 231 255 256 235
-80 256 236 229 240
-81 222 237 239 218
-82 199 221 151 239
-83 244 257 238 219
-84 222 180 248 153
-85 167 146 246 218
-86 132 143 167 151
-87 198 147 196 219
-88 134 145 169 153
-89 200 245 191 195
-90 246 248 205 260
-91 198 209 150 184
-92 247 227 207 175
-93 143 144 190 195
-94 209 224 257 258
-95 210 255 259 230
-96 223 181 216 250
-97 169 204 260 217
-98 246 248 205 260
-99 222 237 239 218
-100 244 257 238 219
-101 220 224 159 192
-102 253 221 254 230
-103 156 158 202 174
-104 209 224 257 258
-105 176 242 225 208
-106 155 171 182 172
-107 157 183 173 208
-108 231 254 226 252
-109 211 193 249 228
-110 256 236 229 240
-111 210 255 259 230
-112 166 232 202 241
-113 253 237 206 185
-114 189 191 213 214
-115 210 148 185 197
-116 158 181 141 207
-117 176 135 160 161
-118 178 137 204 162
-119 165 180 140 206
-120 157 160 163 240
-121 220 247 149 184
-122 258 215 251 186
-123 243 233 234 259
-124 211 212 225 186
-125 231 255 256 235
-126 165 187 145 196
-127 188 245 192 215
-128 171 238 228 251
-129 199 189 190 226
-130 155 223 249 174
-131 1 67 2 48
-132 1 67 4 86
-133 22 1 67 5
-134 88 34 3 6
-135 2 48 117 10
-136 11 1 67 47
-137 12 34 3 118
-138 2 13 46 48
-139 34 3 14 9
-140 15 7 119 65
-141 16 116 62 8
-142 14 62 8 9
-143 23 4 93 86
-144 22 23 5 93
-145 88 24 126 6
-146 2 25 48 85
-147 34 3 26 87
-148 27 115 7 65
-149 121 28 62 8
-150 14 91 29 9
-151 4 82 30 86
-152 22 5 31 21
-153 88 6 84 32
-154 33 7 18 65
-155 35 17 106 130
-156 33 103 18 20
-157 36 19 107 120
-158 103 16 116 20
-159 101 37 31 21
-160 36 117 10 120
-161 11 47 117 10
-162 12 49 118 53
-163 13 46 36 120
-164 14 49 9 53
-165 24 15 126 119
-166 112 50 62 8
-167 25 4 85 86
-168 22 57 5 51
-169 88 6 52 97
-170 39 7 64 65
-171 17 106 128 54
-172 33 17 18 106
-173 55 19 107 76
-174 35 103 20 130
-175 56 92 31 21
-176 58 105 117 10
-177 11 44 47 59
-178 12 60 72 118
-179 45 13 46 61
-180 15 84 119 32
-181 16 116 63 96
-182 17 39 106 64
-183 66 40 19 107
-184 121 91 28 29
-185 68 113 27 115
-186 122 69 124 38
-187 24 126 39 64
-188 66 127 40 43
-189 114 41 129 42
-190 23 93 129 42
-191 89 70 114 41
-192 101 37 127 43
-193 44 59 71 109
-194 45 60 61 72
-195 23 89 70 93
-196 24 26 126 87
-197 77 27 115 75
-198 91 26 29 87
-199 82 30 129 42
-200 89 70 31 21
-201 33 77 18 75
-202 112 103 50 20
-203 11 57 47 51
-204 12 52 118 97
-205 13 46 90 98
-206 68 113 15 119
-207 56 92 16 116
-208 58 105 19 107
-209 91 104 94 29
-210 111 27 115 95
-211 124 38 71 109
-212 66 124 38 40
-213 55 114 41 76
-214 66 114 40 41
-215 122 69 127 43
-216 44 59 63 96
-217 45 61 52 97
-218 99 25 81 85
-219 100 26 83 87
-220 121 101 37 28
-221 102 82 73 30
-222 99 81 84 32
-223 35 63 96 130
-224 101 37 104 94
-225 58 124 38 105
-226 74 129 42 108
-227 56 57 92 51
-228 71 128 54 109
-229 55 110 80 76
-230 111 102 73 95
-231 79 125 74 108
-232 77 112 50 75
-233 77 78 123 75
-234 78 123 49 53
-235 79 125 60 72
-236 110 45 80 61
-237 99 68 113 81
-238 100 83 128 54
-239 99 81 82 30
-240 110 36 80 120
-241 112 49 50 53
-242 44 58 59 105
-243 78 123 60 72
-244 100 39 83 64
-245 89 70 127 43
-246 90 25 85 98
-247 121 56 92 28
-248 90 84 32 98
-249 35 71 130 109
-250 57 51 63 96
-251 122 69 128 54
-252 55 74 108 76
-253 68 102 113 73
-254 102 73 74 108
-255 111 79 125 95
-256 110 79 80 125
-257 100 104 83 94
-258 122 69 104 94
-259 78 111 123 95
-260 90 52 97 98
0