C4graphGraph forms for C4 [ 260, 15 ] = SDD(C_65(1,8))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 260, 15 ] = SDD(C_65(1,8)).

(I) Following is a form readable by MAGMA:

g:=Graph<260|{ {128, 192}, {130, 194}, {129, 193}, {128, 193}, {130, 195}, {129, 194}, {3, 131}, {15, 143}, {5, 133}, {2, 131}, {126, 255}, {124, 253}, {5, 132}, {1, 131}, {125, 255}, {124, 254}, {121, 251}, {18, 144}, {12, 142}, {6, 132}, {7, 132}, {125, 254}, {120, 251}, {9, 141}, {120, 252}, {21, 145}, {1, 132}, {14, 136}, {122, 252}, {113, 247}, {4, 131}, {123, 252}, {122, 253}, {112, 247}, {15, 135}, {112, 248}, {27, 147}, {2, 139}, {29, 148}, {14, 135}, {6, 140}, {114, 248}, {31, 149}, {24, 146}, {12, 134}, {13, 134}, {115, 248}, {114, 249}, {9, 133}, {118, 250}, {117, 249}, {11, 135}, {8, 133}, {119, 250}, {118, 251}, {116, 249}, {11, 134}, {8, 134}, {116, 250}, {113, 255}, {97, 239}, {10, 133}, {96, 239}, {27, 139}, {109, 253}, {96, 240}, {30, 142}, {28, 140}, {26, 139}, {111, 254}, {29, 140}, {28, 141}, {24, 138}, {105, 251}, {98, 240}, {31, 141}, {25, 138}, {99, 240}, {98, 241}, {30, 141}, {101, 241}, {102, 242}, {53, 160}, {103, 242}, {102, 243}, {100, 241}, {26, 140}, {100, 242}, {97, 247}, {55, 161}, {16, 135}, {107, 252}, {17, 137}, {110, 246}, {109, 245}, {59, 163}, {17, 136}, {111, 246}, {110, 247}, {108, 245}, {61, 164}, {18, 136}, {108, 246}, {105, 243}, {63, 165}, {19, 136}, {104, 243}, {99, 248}, {57, 162}, {21, 137}, {104, 244}, {101, 249}, {23, 139}, {20, 137}, {103, 250}, {23, 138}, {20, 138}, {106, 244}, {65, 223}, {22, 137}, {107, 244}, {106, 245}, {64, 223}, {59, 155}, {62, 158}, {60, 156}, {64, 224}, {77, 237}, {58, 155}, {61, 156}, {60, 157}, {79, 238}, {56, 154}, {63, 157}, {66, 224}, {73, 235}, {56, 155}, {62, 157}, {57, 154}, {66, 225}, {67, 224}, {83, 240}, {51, 151}, {69, 225}, {70, 226}, {85, 241}, {50, 151}, {68, 225}, {70, 227}, {71, 226}, {87, 242}, {48, 150}, {58, 156}, {65, 231}, {68, 226}, {48, 151}, {49, 150}, {75, 236}, {77, 229}, {93, 245}, {78, 230}, {76, 229}, {95, 246}, {78, 231}, {79, 230}, {50, 152}, {73, 227}, {76, 230}, {89, 243}, {67, 232}, {72, 227}, {35, 143}, {54, 154}, {52, 152}, {51, 159}, {69, 233}, {72, 228}, {34, 143}, {53, 152}, {52, 153}, {71, 234}, {32, 142}, {55, 153}, {74, 228}, {32, 143}, {91, 244}, {54, 153}, {49, 158}, {33, 142}, {74, 229}, {75, 228}, {43, 155}, {94, 238}, {93, 237}, {45, 156}, {95, 238}, {94, 239}, {92, 237}, {13, 191}, {92, 238}, {47, 157}, {34, 144}, {89, 235}, {41, 154}, {88, 235}, {10, 190}, {38, 146}, {36, 144}, {35, 151}, {88, 236}, {36, 145}, {117, 192}, {37, 144}, {39, 145}, {119, 193}, {81, 231}, {90, 236}, {33, 150}, {91, 236}, {38, 145}, {80, 231}, {90, 237}, {43, 147}, {123, 195}, {46, 150}, {44, 148}, {80, 232}, {42, 147}, {45, 148}, {44, 149}, {7, 189}, {47, 149}, {40, 146}, {82, 232}, {40, 147}, {121, 194}, {46, 149}, {41, 146}, {82, 233}, {83, 232}, {85, 233}, {86, 234}, {37, 152}, {84, 233}, {86, 235}, {87, 234}, {39, 153}, {42, 148}, {81, 239}, {84, 234}, {3, 188}, {127, 192}, {4, 196}, {127, 191}, {126, 190}, {125, 189}, {124, 188}, {123, 187}, {5, 197}, {122, 187}, {126, 191}, {124, 189}, {7, 197}, {120, 186}, {5, 198}, {125, 190}, {121, 186}, {120, 187}, {18, 209}, {12, 207}, {11, 200}, {6, 197}, {1, 197}, {115, 183}, {1, 196}, {114, 183}, {2, 196}, {122, 188}, {112, 182}, {14, 200}, {3, 196}, {113, 182}, {112, 183}, {21, 210}, {15, 200}, {14, 201}, {9, 206}, {4, 195}, {29, 213}, {31, 214}, {13, 199}, {114, 184}, {6, 205}, {24, 211}, {12, 199}, {10, 198}, {118, 186}, {116, 184}, {115, 191}, {99, 175}, {11, 199}, {98, 175}, {117, 184}, {116, 185}, {2, 204}, {119, 185}, {96, 174}, {8, 198}, {8, 199}, {118, 185}, {113, 190}, {97, 174}, {96, 175}, {27, 212}, {9, 198}, {16, 192}, {107, 187}, {30, 206}, {29, 205}, {28, 205}, {109, 188}, {31, 206}, {30, 207}, {19, 193}, {111, 189}, {98, 176}, {28, 206}, {25, 203}, {24, 203}, {105, 186}, {51, 224}, {22, 194}, {102, 178}, {100, 176}, {99, 183}, {53, 225}, {55, 226}, {101, 176}, {100, 177}, {26, 204}, {103, 177}, {26, 205}, {102, 177}, {97, 182}, {27, 204}, {16, 200}, {110, 182}, {108, 180}, {107, 179}, {61, 229}, {17, 201}, {63, 230}, {109, 180}, {108, 181}, {106, 179}, {19, 201}, {111, 181}, {104, 178}, {57, 227}, {25, 195}, {17, 202}, {110, 181}, {105, 178}, {104, 179}, {23, 204}, {18, 201}, {22, 202}, {23, 203}, {67, 159}, {66, 159}, {101, 184}, {20, 202}, {106, 180}, {103, 185}, {64, 158}, {15, 208}, {59, 228}, {21, 202}, {20, 203}, {64, 159}, {65, 158}, {61, 221}, {62, 222}, {75, 171}, {60, 221}, {63, 222}, {62, 223}, {77, 172}, {57, 219}, {60, 222}, {66, 160}, {79, 173}, {56, 219}, {73, 170}, {56, 220}, {67, 167}, {68, 160}, {70, 162}, {68, 161}, {69, 160}, {85, 176}, {49, 215}, {58, 220}, {71, 161}, {87, 177}, {48, 215}, {59, 220}, {58, 221}, {65, 166}, {70, 161}, {48, 216}, {91, 179}, {75, 163}, {76, 164}, {78, 166}, {74, 163}, {93, 180}, {76, 165}, {77, 164}, {50, 216}, {95, 181}, {72, 162}, {79, 165}, {50, 217}, {51, 216}, {72, 163}, {73, 162}, {78, 165}, {89, 178}, {53, 217}, {54, 218}, {52, 217}, {55, 218}, {54, 219}, {69, 168}, {33, 207}, {52, 218}, {49, 223}, {71, 169}, {74, 164}, {32, 207}, {32, 208}, {94, 174}, {92, 172}, {91, 171}, {45, 221}, {47, 222}, {93, 172}, {92, 173}, {90, 171}, {34, 208}, {95, 173}, {41, 219}, {88, 170}, {34, 209}, {94, 173}, {35, 208}, {88, 171}, {89, 170}, {37, 209}, {38, 210}, {83, 167}, {10, 255}, {39, 210}, {38, 211}, {36, 209}, {82, 167}, {33, 215}, {36, 210}, {80, 166}, {90, 172}, {43, 220}, {80, 167}, {81, 166}, {45, 213}, {46, 214}, {7, 254}, {47, 214}, {46, 215}, {44, 213}, {41, 211}, {44, 214}, {82, 168}, {35, 216}, {40, 211}, {37, 217}, {40, 212}, {83, 175}, {84, 168}, {86, 170}, {39, 218}, {84, 169}, {85, 168}, {3, 253}, {42, 212}, {87, 169}, {42, 213}, {43, 212}, {81, 174}, {86, 169}, {4, 260}, {13, 256}, {16, 257}, {19, 258}, {22, 259}, {25, 260}, {115, 256}, {117, 257}, {119, 258}, {121, 259}, {126, 256}, {127, 257}, {123, 260}, {127, 256}, {128, 257}, {130, 259}, {128, 258}, {129, 259}, {129, 258}, {130, 260} }>;

(II) A more general form is to represent the graph as the orbit of {128, 192} under the group generated by the following permutations:

a: (139, 204)
b: (171, 236)
c: (141, 206)
d: (179, 244)
e: (147, 212)
f: (173, 238)
g: (161, 226)
h: (148, 213)
m: (134, 199)
n1: (166, 231)
a1: (136, 201)
b1: (154, 219)
c1: (188, 253)
d1: (183, 248)
e1: (160, 225)
f1: (1, 2, 4, 3)(5, 27, 130, 109)(6, 23, 123, 124)(7, 26, 25, 122)(8, 43, 129, 93)(9, 40, 121, 108)(10, 42, 22, 106)(11, 59, 128, 77)(12, 56, 119, 92)(13, 58, 19, 90)(14, 75, 127, 61)(15, 72, 117, 76)(16, 74)(17, 91, 126, 45)(18, 88, 115, 60)(20, 107, 125, 29)(21, 104, 113, 44)(24, 120, 111, 28)(30, 41, 118, 95)(31, 38, 105, 110)(32, 57, 116, 79)(33, 54, 103, 94)(34, 73, 114, 63)(35, 70, 101, 78)(36, 89, 112, 47)(37, 86, 99, 62)(39, 102, 97, 46)(48, 55, 100, 81)(49, 52, 87, 96)(50, 71, 98, 65)(51, 68, 85, 80)(53, 84, 83, 64)(66, 69, 82, 67)(132, 139, 195, 188)(133, 147, 194, 180)(134, 155, 193, 172)(135, 163, 192, 164)(136, 171, 191, 156)(137, 179, 190, 148)(138, 187, 189, 140)(141, 146, 186, 181)(142, 154, 185, 173)(143, 162, 184, 165)(144, 170, 183, 157)(145, 178, 182, 149)(150, 153, 177, 174)(151, 161, 176, 166)(152, 169, 175, 158)(159, 160, 168, 167)(197, 204, 260, 253)(198, 212, 259, 245)(199, 220, 258, 237)(200, 228, 257, 229)(201, 236, 256, 221)(202, 244, 255, 213)(203, 252, 254, 205)(206, 211, 251, 246)(207, 219, 250, 238)(208, 227, 249, 230)(209, 235, 248, 222)(210, 243, 247, 214)(215, 218, 242, 239)(216, 226, 241, 231)(217, 234, 240, 223)(224, 225, 233, 232)
g1: (162, 227)
h1: (178, 243)
m1: (176, 241)
n2: (158, 223)
a2: (186, 251)
b2: (190, 255)
c2: (132, 197)
d2: (189, 254)
e2: (157, 222)
f2: (138, 203)
g2: (135, 200)
h2: (145, 210)
m2: (167, 232)
n3: (177, 242)
a3: (174, 239)
b3: (133, 198)
c3: (165, 230)
d3: (185, 250)
e3: (153, 218)
f3: (168, 233)
g3: (187, 252)
h3: (155, 220)
m3: (170, 235)
n4: (182, 247)
a4: (195, 260)
b4: (163, 228)
c4: (131, 196)
d4: (146, 211)
e4: (184, 249)
f4: (142, 207)
g4: (137, 202)
h4: (169, 234)
m4: (150, 215)
n5: (194, 259)
a5: (181, 246)
b5: (149, 214)
c5: (180, 245)
d5: (193, 258)
e5: (152, 217)
f5: (143, 208)
g5: (175, 240)
h5: (192, 257)
m5: (191, 256)
n6: (159, 224)
a6: (140, 205)
b6: (164, 229)
c6: (156, 221)
d6: (144, 209)
e6: (172, 237)
f6: (2, 7)(3, 6)(4, 5)(8, 130)(9, 123)(10, 25)(11, 129)(12, 121)(13, 22)(14, 128)(15, 119)(16, 19)(17, 127)(18, 117)(20, 126)(21, 115)(23, 125)(24, 113)(26, 124)(27, 111)(28, 122)(29, 109)(30, 120)(31, 107)(32, 118)(33, 105)(34, 116)(35, 103)(36, 114)(37, 101)(38, 112)(39, 99)(40, 110)(41, 97)(42, 108)(43, 95)(44, 106)(45, 93)(46, 104)(47, 91)(48, 102)(49, 89)(50, 100)(51, 87)(52, 98)(53, 85)(54, 96)(55, 83)(56, 94)(57, 81)(58, 92)(59, 79)(60, 90)(61, 77)(62, 88)(63, 75)(64, 86)(65, 73)(66, 84)(67, 71)(68, 82)(70, 80)(72, 78)(74, 76)(131, 132)(133, 195)(134, 194)(135, 193)(136, 192)(137, 191)(138, 190)(139, 189)(140, 188)(141, 187)(142, 186)(143, 185)(144, 184)(145, 183)(146, 182)(147, 181)(148, 180)(149, 179)(150, 178)(151, 177)(152, 176)(153, 175)(154, 174)(155, 173)(156, 172)(157, 171)(158, 170)(159, 169)(160, 168)(161, 167)(162, 166)(163, 165)(196, 197)(198, 260)(199, 259)(200, 258)(201, 257)(202, 256)(203, 255)(204, 254)(205, 253)(206, 252)(207, 251)(208, 250)(209, 249)(210, 248)(211, 247)(212, 246)(213, 245)(214, 244)(215, 243)(216, 242)(217, 241)(218, 240)(219, 239)(220, 238)(221, 237)(222, 236)(223, 235)(224, 234)(225, 233)(226, 232)(227, 231)(228, 230)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 260, 15 ]
260
-1 132 196 131 197
-2 204 139 196 131
-3 253 188 196 131
-4 260 195 196 131
-5 132 198 133 197
-6 132 205 140 197
-7 132 254 189 197
-8 198 133 199 134
-9 198 133 206 141
-10 198 133 255 190
-11 199 134 200 135
-12 199 134 207 142
-13 199 134 256 191
-14 200 135 201 136
-15 143 200 135 208
-16 200 135 257 192
-17 201 136 202 137
-18 209 144 201 136
-19 201 136 258 193
-20 202 137 203 138
-21 210 145 202 137
-22 202 137 259 194
-23 203 138 204 139
-24 211 146 203 138
-25 203 138 260 195
-26 204 139 205 140
-27 212 147 204 139
-28 205 140 206 141
-29 213 148 205 140
-30 206 141 207 142
-31 214 149 206 141
-32 143 207 142 208
-33 215 150 207 142
-34 143 209 144 208
-35 143 216 151 208
-36 209 144 210 145
-37 209 144 217 152
-38 210 145 211 146
-39 210 145 218 153
-40 211 146 212 147
-41 154 211 146 219
-42 212 147 213 148
-43 220 155 212 147
-44 213 148 214 149
-45 221 156 213 148
-46 214 149 215 150
-47 222 157 214 149
-48 215 150 216 151
-49 223 158 215 150
-50 216 151 217 152
-51 224 159 216 151
-52 217 152 218 153
-53 225 160 217 152
-54 154 218 153 219
-55 226 161 218 153
-56 154 220 155 219
-57 154 227 162 219
-58 220 155 221 156
-59 220 155 228 163
-60 221 156 222 157
-61 221 156 229 164
-62 222 157 223 158
-63 165 222 157 230
-64 223 158 224 159
-65 231 166 223 158
-66 224 159 225 160
-67 232 167 224 159
-68 225 160 226 161
-69 233 168 225 160
-70 226 161 227 162
-71 234 169 226 161
-72 227 162 228 163
-73 235 170 227 162
-74 228 163 229 164
-75 236 171 228 163
-76 165 229 164 230
-77 237 172 229 164
-78 165 231 166 230
-79 165 238 173 230
-80 231 166 232 167
-81 231 166 239 174
-82 232 167 233 168
-83 232 167 240 175
-84 233 168 234 169
-85 176 233 168 241
-86 234 169 235 170
-87 242 177 234 169
-88 235 170 236 171
-89 243 178 235 170
-90 236 171 237 172
-91 244 179 236 171
-92 237 172 238 173
-93 245 180 237 172
-94 238 173 239 174
-95 246 181 238 173
-96 239 174 240 175
-97 247 182 239 174
-98 176 240 175 241
-99 248 183 240 175
-100 176 242 177 241
-101 176 249 184 241
-102 242 177 243 178
-103 242 177 250 185
-104 243 178 244 179
-105 243 178 251 186
-106 244 179 245 180
-107 187 244 179 252
-108 245 180 246 181
-109 253 188 245 180
-110 246 181 247 182
-111 254 189 246 181
-112 247 182 248 183
-113 255 190 247 182
-114 248 183 249 184
-115 256 191 248 183
-116 249 184 250 185
-117 257 192 249 184
-118 250 185 251 186
-119 258 193 250 185
-120 187 251 186 252
-121 259 194 251 186
-122 187 253 188 252
-123 187 260 195 252
-124 253 188 254 189
-125 254 189 255 190
-126 255 190 256 191
-127 256 191 257 192
-128 257 192 258 193
-129 258 193 259 194
-130 259 194 260 195
-131 1 2 3 4
-132 1 5 6 7
-133 5 8 9 10
-134 11 12 13 8
-135 11 14 15 16
-136 14 17 18 19
-137 22 17 20 21
-138 23 24 25 20
-139 23 2 26 27
-140 26 6 28 29
-141 28 30 9 31
-142 33 12 30 32
-143 34 35 15 32
-144 34 36 37 18
-145 36 38 39 21
-146 24 38 40 41
-147 27 40 42 43
-148 44 45 29 42
-149 44 46 47 31
-150 33 46 48 49
-151 35 48 50 51
-152 37 50 52 53
-153 55 39 52 54
-154 56 57 41 54
-155 56 58 59 43
-156 45 58 60 61
-157 47 60 62 63
-158 49 62 64 65
-159 66 67 51 64
-160 66 68 69 53
-161 55 68 70 71
-162 57 70 72 73
-163 59 72 74 75
-164 77 61 74 76
-165 78 79 63 76
-166 78 80 81 65
-167 67 80 82 83
-168 69 82 84 85
-169 71 84 86 87
-170 88 89 73 86
-171 88 90 91 75
-172 77 90 92 93
-173 79 92 94 95
-174 81 94 96 97
-175 99 83 96 98
-176 100 101 85 98
-177 100 102 103 87
-178 89 102 104 105
-179 91 104 106 107
-180 93 106 108 109
-181 110 111 95 108
-182 110 112 113 97
-183 99 112 114 115
-184 101 114 116 117
-185 103 116 118 119
-186 121 105 118 120
-187 122 123 107 120
-188 122 3 124 109
-189 111 124 125 7
-190 113 125 126 10
-191 13 115 126 127
-192 16 127 117 128
-193 128 19 129 119
-194 22 121 129 130
-195 123 25 4 130
-196 1 2 3 4
-197 1 5 6 7
-198 5 8 9 10
-199 11 12 13 8
-200 11 14 15 16
-201 14 17 18 19
-202 22 17 20 21
-203 23 24 25 20
-204 23 2 26 27
-205 26 6 28 29
-206 28 30 9 31
-207 33 12 30 32
-208 34 35 15 32
-209 34 36 37 18
-210 36 38 39 21
-211 24 38 40 41
-212 27 40 42 43
-213 44 45 29 42
-214 44 46 47 31
-215 33 46 48 49
-216 35 48 50 51
-217 37 50 52 53
-218 55 39 52 54
-219 56 57 41 54
-220 56 58 59 43
-221 45 58 60 61
-222 47 60 62 63
-223 49 62 64 65
-224 66 67 51 64
-225 66 68 69 53
-226 55 68 70 71
-227 57 70 72 73
-228 59 72 74 75
-229 77 61 74 76
-230 78 79 63 76
-231 78 80 81 65
-232 67 80 82 83
-233 69 82 84 85
-234 71 84 86 87
-235 88 89 73 86
-236 88 90 91 75
-237 77 90 92 93
-238 79 92 94 95
-239 81 94 96 97
-240 99 83 96 98
-241 100 101 85 98
-242 100 102 103 87
-243 89 102 104 105
-244 91 104 106 107
-245 93 106 108 109
-246 110 111 95 108
-247 110 112 113 97
-248 99 112 114 115
-249 101 114 116 117
-250 103 116 118 119
-251 121 105 118 120
-252 122 123 107 120
-253 122 3 124 109
-254 111 124 125 7
-255 113 125 126 10
-256 13 115 126 127
-257 16 127 117 128
-258 128 19 129 119
-259 22 121 129 130
-260 123 25 4 130
0

**************