[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 260, 16 ] =
SDD(C_65(1,18)).
(I) Following is a form readable by MAGMA:
g:=Graph<260|{ {128, 192}, {130, 194}, {129, 193}, {128, 193}, {130, 195}, {129,
194}, {3, 131}, {30, 158}, {5, 133}, {2, 131}, {126, 255}, {124, 253}, {122,
251}, {120, 249}, {118, 247}, {116, 245}, {114, 243}, {5, 132}, {1, 131}, {125,
255}, {124, 254}, {121, 251}, {120, 250}, {117, 247}, {116, 246}, {112, 242},
{6, 132}, {7, 132}, {125, 254}, {121, 250}, {117, 246}, {113, 242}, {112, 243},
{24, 156}, {107, 239}, {36, 160}, {1, 132}, {106, 239}, {14, 136}, {123, 253},
{122, 252}, {115, 245}, {114, 244}, {104, 238}, {39, 161}, {27, 157}, {4, 131},
{123, 252}, {115, 244}, {105, 238}, {104, 239}, {15, 135}, {102, 238}, {100,
236}, {99, 235}, {42, 162}, {18, 154}, {14, 135}, {101, 236}, {100, 237}, {98,
235}, {12, 134}, {103, 237}, {96, 234}, {13, 134}, {102, 237}, {97, 234}, {96,
235}, {9, 133}, {11, 135}, {8, 133}, {11, 134}, {8, 134}, {119, 249}, {118,
248}, {98, 236}, {45, 163}, {21, 155}, {10, 133}, {119, 248}, {6, 150}, {54,
166}, {29, 141}, {27, 139}, {26, 139}, {29, 140}, {24, 138}, {30, 140}, {25,
138}, {59, 168}, {31, 140}, {12, 152}, {61, 169}, {48, 164}, {43, 191}, {75,
223}, {63, 170}, {74, 223}, {15, 153}, {51, 165}, {40, 190}, {26, 140}, {72,
222}, {2, 149}, {28, 139}, {16, 135}, {72, 223}, {73, 222}, {17, 137}, {103,
255}, {37, 189}, {67, 219}, {68, 220}, {70, 222}, {17, 136}, {66, 219}, {68,
221}, {69, 220}, {18, 136}, {106, 240}, {64, 218}, {71, 221}, {19, 136}, {101,
254}, {64, 219}, {65, 218}, {70, 221}, {21, 137}, {110, 242}, {108, 240}, {23,
139}, {20, 137}, {109, 240}, {108, 241}, {97, 252}, {23, 138}, {9, 151}, {111,
241}, {99, 253}, {57, 167}, {34, 188}, {20, 138}, {66, 220}, {22, 137}, {110,
241}, {25, 185}, {53, 149}, {51, 147}, {87, 247}, {50, 147}, {53, 148}, {89,
248}, {48, 146}, {91, 249}, {54, 148}, {49, 146}, {55, 148}, {85, 246}, {19,
183}, {95, 251}, {60, 152}, {31, 187}, {81, 244}, {16, 182}, {50, 148}, {28,
186}, {62, 152}, {83, 245}, {40, 143}, {93, 250}, {52, 147}, {62, 153}, {63,
152}, {39, 143}, {71, 239}, {38, 143}, {36, 142}, {61, 151}, {74, 224}, {37,
142}, {107, 192}, {60, 151}, {69, 238}, {33, 141}, {109, 193}, {58, 150}, {57,
149}, {35, 143}, {76, 224}, {78, 226}, {32, 141}, {111, 194}, {59, 150}, {58,
151}, {56, 149}, {35, 142}, {65, 236}, {76, 225}, {77, 224}, {22, 184}, {56,
150}, {32, 142}, {67, 237}, {79, 225}, {34, 141}, {78, 225}, {83, 227}, {84,
228}, {86, 230}, {3, 178}, {82, 227}, {84, 229}, {85, 228}, {80, 226}, {113,
195}, {90, 232}, {87, 229}, {80, 227}, {81, 226}, {86, 229}, {7, 179}, {94,
234}, {92, 232}, {92, 233}, {93, 232}, {38, 144}, {95, 233}, {82, 228}, {94,
233}, {13, 181}, {41, 145}, {41, 144}, {73, 240}, {42, 144}, {75, 241}, {43,
144}, {45, 145}, {91, 231}, {47, 147}, {79, 243}, {44, 145}, {90, 231}, {47,
146}, {10, 180}, {44, 146}, {33, 159}, {88, 230}, {46, 145}, {127, 192}, {77,
242}, {88, 231}, {89, 230}, {4, 196}, {127, 191}, {126, 190}, {125, 189}, {124,
188}, {123, 187}, {122, 186}, {121, 185}, {120, 184}, {119, 183}, {118, 182},
{117, 181}, {116, 180}, {115, 179}, {114, 178}, {113, 177}, {5, 197}, {30, 223},
{126, 191}, {124, 189}, {122, 187}, {120, 185}, {118, 183}, {116, 181}, {114,
179}, {112, 177}, {33, 224}, {7, 197}, {112, 178}, {109, 175}, {5, 198}, {125,
190}, {121, 186}, {117, 182}, {108, 175}, {11, 200}, {6, 197}, {1, 197}, {106,
174}, {105, 173}, {1, 196}, {107, 174}, {106, 175}, {104, 173}, {39, 226}, {36,
225}, {27, 222}, {24, 221}, {2, 196}, {104, 174}, {14, 200}, {3, 196}, {123,
188}, {115, 180}, {15, 200}, {14, 201}, {4, 195}, {97, 169}, {100, 172}, {98,
170}, {18, 219}, {99, 170}, {98, 171}, {96, 169}, {45, 228}, {42, 227}, {21,
220}, {13, 199}, {102, 172}, {96, 170}, {12, 199}, {103, 172}, {102, 173}, {10,
198}, {11, 199}, {8, 198}, {101, 171}, {8, 199}, {119, 184}, {100, 171}, {9,
198}, {28, 204}, {29, 205}, {6, 215}, {57, 232}, {54, 231}, {9, 216}, {25, 203},
{59, 233}, {31, 205}, {77, 159}, {24, 203}, {30, 205}, {29, 206}, {76, 159}, {2,
214}, {63, 235}, {73, 157}, {74, 158}, {12, 217}, {51, 230}, {48, 229}, {15,
218}, {72, 157}, {74, 159}, {75, 158}, {26, 204}, {105, 191}, {72, 158}, {26,
205}, {61, 234}, {40, 255}, {27, 204}, {16, 200}, {101, 189}, {17, 201}, {65,
153}, {66, 154}, {68, 156}, {64, 153}, {103, 190}, {66, 155}, {67, 154}, {19,
201}, {97, 187}, {64, 154}, {70, 156}, {17, 202}, {37, 254}, {23, 204}, {18,
201}, {70, 157}, {71, 156}, {22, 202}, {108, 176}, {23, 203}, {20, 202}, {110,
176}, {69, 155}, {20, 203}, {111, 176}, {110, 177}, {99, 188}, {34, 253}, {21,
202}, {68, 155}, {52, 212}, {53, 213}, {85, 181}, {87, 182}, {49, 211}, {58,
216}, {55, 213}, {81, 179}, {25, 250}, {91, 184}, {54, 213}, {53, 214}, {48,
211}, {31, 252}, {60, 216}, {93, 185}, {62, 218}, {60, 217}, {95, 186}, {61,
216}, {50, 212}, {63, 217}, {73, 175}, {16, 247}, {51, 212}, {50, 213}, {28,
251}, {62, 217}, {83, 180}, {69, 173}, {71, 174}, {37, 207}, {65, 171}, {19,
248}, {36, 207}, {34, 206}, {59, 215}, {35, 207}, {76, 160}, {58, 215}, {32,
206}, {56, 214}, {46, 192}, {78, 160}, {89, 183}, {22, 249}, {57, 214}, {56,
215}, {33, 206}, {32, 207}, {67, 172}, {78, 161}, {79, 160}, {3, 243}, {49,
193}, {81, 161}, {82, 162}, {84, 164}, {80, 161}, {82, 163}, {83, 162}, {80,
162}, {86, 164}, {7, 244}, {35, 208}, {86, 165}, {87, 164}, {55, 195}, {92,
168}, {38, 208}, {94, 168}, {52, 194}, {85, 163}, {38, 209}, {95, 168}, {94,
169}, {39, 208}, {84, 163}, {40, 208}, {41, 209}, {43, 209}, {93, 167}, {13,
246}, {92, 167}, {47, 212}, {42, 209}, {41, 210}, {75, 176}, {46, 210}, {90,
166}, {47, 211}, {77, 177}, {89, 165}, {79, 178}, {91, 166}, {90, 167}, {88,
165}, {44, 210}, {88, 166}, {10, 245}, {45, 210}, {44, 211}, {4, 260}, {43,
256}, {46, 257}, {49, 258}, {55, 260}, {52, 259}, {105, 256}, {107, 257}, {111,
259}, {109, 258}, {113, 260}, {126, 256}, {127, 257}, {127, 256}, {128, 257},
{130, 259}, {128, 258}, {129, 259}, {129, 258}, {130, 260} }>;
(II) A more general form is to represent the graph as the orbit of {128, 192}
under the group generated by the following permutations:
a: (139, 204) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (171, 236)
c: (179, 244)
d: (147, 212)
e: (141, 206)
f: (173, 238)
g: (161, 226)
h: (148, 213)
m: (166, 231)
n1: (134, 199)
a1: (136, 201)
b1: (154, 219)
c1: (188, 253)
d1: (151, 216)
e1: (183, 248)
f1: (160, 225)
g1: (162, 227)
h1: (176, 241)
m1: (178, 243)
n2: (158, 223)
a2: (186, 251)
b2: (190, 255)
c2: (132, 197)
d2: (189, 254)
e2: (157, 222)
f2: (138, 203)
g2: (177, 242)
h2: (135, 200)
m2: (167, 232)
n3: (174, 239)
a3: (133, 198)
b3: (165, 230)
c3: (185, 250)
d3: (153, 218)
e3: (168, 233)
f3: (187, 252)
g3: (155, 220)
h3: (170, 235)
m3: (182, 247)
n4: (195, 260)
a4: (2, 7)(3, 6)(4, 5)(8, 130)(9, 113)(10, 55)(11, 129)(12, 111)(13, 52)(14,
128)(15, 109)(16, 49)(17, 127)(18, 107)(19, 46)(20, 126)(21, 105)(22, 43)(23,
125)(24, 103)(25, 40)(26, 124)(27, 101)(28, 37)(29, 123)(30, 99)(31, 34)(32,
122)(33, 97)(35, 121)(36, 95)(38, 120)(39, 93)(41, 119)(42, 91)(44, 118)(45,
89)(47, 117)(48, 87)(50, 116)(51, 85)(53, 115)(54, 83)(56, 114)(57, 81)(58,
112)(59, 79)(60, 110)(61, 77)(62, 108)(63, 75)(64, 106)(65, 73)(66, 104)(67,
71)(68, 102)(70, 100)(72, 98)(74, 96)(76, 94)(78, 92)(80, 90)(82, 88)(84,
86)(131, 132)(133, 195)(134, 194)(135, 193)(136, 192)(137, 191)(138, 190)(139,
189)(140, 188)(141, 187)(142, 186)(143, 185)(144, 184)(145, 183)(146, 182)(147,
181)(148, 180)(149, 179)(150, 178)(151, 177)(152, 176)(153, 175)(154, 174)(155,
173)(156, 172)(157, 171)(158, 170)(159, 169)(160, 168)(161, 167)(162, 166)(163,
165)(196, 197)(198, 260)(199, 259)(200, 258)(201, 257)(202, 256)(203, 255)(204,
254)(205, 253)(206, 252)(207, 251)(208, 250)(209, 249)(210, 248)(211, 247)(212,
246)(213, 245)(214, 244)(215, 243)(216, 242)(217, 241)(218, 240)(219, 239)(220,
238)(221, 237)(222, 236)(223, 235)(224, 234)(225, 233)(226, 232)(227, 231)(228,
230)
b4: (1, 2, 56, 6)(3, 53, 59, 5)(4, 57, 58, 7)(8, 79, 50, 95)(9, 114, 55, 92)(10,
112, 54, 94)(11, 36, 47, 28)(12, 78, 52, 121)(13, 76, 51, 122)(14, 37, 44,
27)(15, 35, 49, 23)(16, 32, 48, 26)(17, 101, 41, 73)(18, 125, 46, 70)(19, 124,
45, 72)(20, 65, 38, 109)(21, 100, 43, 106)(22, 98, 42, 108)(24, 64, 40, 128)(25,
62, 39, 129)(29, 87)(30, 118, 34, 84)(31, 117, 33, 86)(60, 81, 130, 93)(61, 115,
113, 90)(63, 80, 111, 120)(66, 103, 127, 71)(67, 126, 107, 68)(69, 102, 105,
104)(74, 89, 123, 85)(75, 119, 99, 82)(77, 88, 97, 116)(83, 110, 91, 96)(131,
149, 150, 132)(133, 178, 148, 168)(134, 160, 147, 186)(135, 142, 146, 139)(136,
189, 145, 157)(137, 171, 144, 175)(138, 153, 143, 193)(140, 182, 141, 164)(151,
179, 195, 167)(152, 161, 194, 185)(154, 190, 192, 156)(155, 172, 191, 174)(158,
183, 188, 163)(159, 165, 187, 181)(162, 176, 184, 170)(166, 169, 180, 177)(196,
214, 215, 197)(198, 243, 213, 233)(199, 225, 212, 251)(200, 207, 211, 204)(201,
254, 210, 222)(202, 236, 209, 240)(203, 218, 208, 258)(205, 247, 206, 229)(216,
244, 260, 232)(217, 226, 259, 250)(219, 255, 257, 221)(220, 237, 256, 239)(223,
248, 253, 228)(224, 230, 252, 246)(227, 241, 249, 235)(231, 234, 245, 242)
c4: (163, 228)
d4: (131, 196)
e4: (184, 249)
f4: (146, 211)
g4: (142, 207)
h4: (169, 234)
m4: (137, 202)
n5: (150, 215)
a5: (194, 259)
b5: (149, 214)
c5: (181, 246)
d5: (180, 245)
e5: (193, 258)
f5: (152, 217)
g5: (143, 208)
h5: (175, 240)
m5: (159, 224)
n6: (192, 257)
a6: (191, 256)
b6: (140, 205)
c6: (164, 229)
d6: (156, 221)
e6: (144, 209)
f6: (172, 237)
C4[ 260, 16 ]
260
-1 132 196 131 197
-2 214 149 196 131
-3 243 178 196 131
-4 260 195 196 131
-5 132 198 133 197
-6 132 215 150 197
-7 132 244 179 197
-8 198 133 199 134
-9 198 133 216 151
-10 198 133 245 180
-11 199 134 200 135
-12 199 134 217 152
-13 199 134 246 181
-14 200 135 201 136
-15 200 135 218 153
-16 200 135 247 182
-17 201 136 202 137
-18 154 201 136 219
-19 201 136 248 183
-20 202 137 203 138
-21 220 155 202 137
-22 202 137 249 184
-23 203 138 204 139
-24 221 156 203 138
-25 203 138 250 185
-26 204 139 205 140
-27 222 157 204 139
-28 204 139 251 186
-29 205 140 206 141
-30 223 158 205 140
-31 187 205 140 252
-32 206 141 207 142
-33 224 159 206 141
-34 253 188 206 141
-35 143 207 142 208
-36 225 160 207 142
-37 254 189 207 142
-38 143 209 144 208
-39 143 226 161 208
-40 143 255 190 208
-41 209 144 210 145
-42 209 144 227 162
-43 209 144 256 191
-44 210 145 211 146
-45 210 145 228 163
-46 210 145 257 192
-47 211 146 212 147
-48 211 146 229 164
-49 211 146 258 193
-50 212 147 213 148
-51 165 212 147 230
-52 212 147 259 194
-53 213 148 214 149
-54 231 166 213 148
-55 213 148 260 195
-56 214 149 215 150
-57 232 167 214 149
-58 215 150 216 151
-59 233 168 215 150
-60 216 151 217 152
-61 234 169 216 151
-62 217 152 218 153
-63 235 170 217 152
-64 154 218 153 219
-65 236 171 218 153
-66 154 220 155 219
-67 154 237 172 219
-68 220 155 221 156
-69 220 155 238 173
-70 221 156 222 157
-71 221 156 239 174
-72 222 157 223 158
-73 222 157 240 175
-74 223 158 224 159
-75 176 223 158 241
-76 224 159 225 160
-77 242 177 224 159
-78 225 160 226 161
-79 243 178 225 160
-80 226 161 227 162
-81 244 179 226 161
-82 227 162 228 163
-83 245 180 227 162
-84 228 163 229 164
-85 246 181 228 163
-86 165 229 164 230
-87 247 182 229 164
-88 165 231 166 230
-89 165 248 183 230
-90 231 166 232 167
-91 231 166 249 184
-92 232 167 233 168
-93 232 167 250 185
-94 233 168 234 169
-95 233 168 251 186
-96 234 169 235 170
-97 187 234 169 252
-98 235 170 236 171
-99 253 188 235 170
-100 236 171 237 172
-101 254 189 236 171
-102 237 172 238 173
-103 255 190 237 172
-104 238 173 239 174
-105 256 191 238 173
-106 239 174 240 175
-107 257 192 239 174
-108 176 240 175 241
-109 258 193 240 175
-110 176 242 177 241
-111 176 259 194 241
-112 242 177 243 178
-113 242 177 260 195
-114 243 178 244 179
-115 244 179 245 180
-116 245 180 246 181
-117 246 181 247 182
-118 247 182 248 183
-119 248 183 249 184
-120 249 184 250 185
-121 250 185 251 186
-122 187 251 186 252
-123 187 253 188 252
-124 253 188 254 189
-125 254 189 255 190
-126 255 190 256 191
-127 256 191 257 192
-128 257 192 258 193
-129 258 193 259 194
-130 259 194 260 195
-131 1 2 3 4
-132 1 5 6 7
-133 5 8 9 10
-134 11 12 13 8
-135 11 14 15 16
-136 14 17 18 19
-137 22 17 20 21
-138 23 24 25 20
-139 23 26 27 28
-140 26 29 30 31
-141 33 34 29 32
-142 35 36 37 32
-143 35 38 39 40
-144 38 41 42 43
-145 44 45 46 41
-146 44 47 48 49
-147 47 50 51 52
-148 55 50 53 54
-149 56 2 57 53
-150 56 58 59 6
-151 58 60 61 9
-152 12 60 62 63
-153 15 62 64 65
-154 66 67 18 64
-155 66 68 69 21
-156 24 68 70 71
-157 70 27 72 73
-158 72 30 74 75
-159 33 77 74 76
-160 78 79 36 76
-161 78 80 81 39
-162 80 82 83 42
-163 45 82 84 85
-164 48 84 86 87
-165 88 89 51 86
-166 88 90 91 54
-167 57 90 92 93
-168 59 92 94 95
-169 61 94 96 97
-170 99 63 96 98
-171 100 101 65 98
-172 67 100 102 103
-173 69 102 104 105
-174 71 104 106 107
-175 73 106 108 109
-176 110 111 75 108
-177 77 110 112 113
-178 79 112 3 114
-179 81 114 115 7
-180 115 83 116 10
-181 13 116 117 85
-182 16 117 118 87
-183 89 19 118 119
-184 22 91 119 120
-185 121 25 93 120
-186 121 122 28 95
-187 122 123 31 97
-188 99 34 123 124
-189 101 124 37 125
-190 103 125 126 40
-191 126 105 127 43
-192 46 127 128 107
-193 49 128 129 109
-194 111 52 129 130
-195 55 113 4 130
-196 1 2 3 4
-197 1 5 6 7
-198 5 8 9 10
-199 11 12 13 8
-200 11 14 15 16
-201 14 17 18 19
-202 22 17 20 21
-203 23 24 25 20
-204 23 26 27 28
-205 26 29 30 31
-206 33 34 29 32
-207 35 36 37 32
-208 35 38 39 40
-209 38 41 42 43
-210 44 45 46 41
-211 44 47 48 49
-212 47 50 51 52
-213 55 50 53 54
-214 56 2 57 53
-215 56 58 59 6
-216 58 60 61 9
-217 12 60 62 63
-218 15 62 64 65
-219 66 67 18 64
-220 66 68 69 21
-221 24 68 70 71
-222 70 27 72 73
-223 72 30 74 75
-224 33 77 74 76
-225 78 79 36 76
-226 78 80 81 39
-227 80 82 83 42
-228 45 82 84 85
-229 48 84 86 87
-230 88 89 51 86
-231 88 90 91 54
-232 57 90 92 93
-233 59 92 94 95
-234 61 94 96 97
-235 99 63 96 98
-236 100 101 65 98
-237 67 100 102 103
-238 69 102 104 105
-239 71 104 106 107
-240 73 106 108 109
-241 110 111 75 108
-242 77 110 112 113
-243 79 112 3 114
-244 81 114 115 7
-245 115 83 116 10
-246 13 116 117 85
-247 16 117 118 87
-248 89 19 118 119
-249 22 91 119 120
-250 121 25 93 120
-251 121 122 28 95
-252 122 123 31 97
-253 99 34 123 124
-254 101 124 37 125
-255 103 125 126 40
-256 126 105 127 43
-257 46 127 128 107
-258 49 128 129 109
-259 111 52 129 130
-260 55 113 4 130
0