C4graphGraph forms for C4 [ 260, 17 ] = SS[260,1]

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 260, 17 ] = SS[260,1].

(I) Following is a form readable by MAGMA:

g:=Graph<260|{ {1, 3}, {1, 2}, {136, 139}, {1, 5}, {10, 14}, {1, 4}, {208, 213}, {18, 23}, {9, 12}, {8, 13}, {136, 141}, {17, 23}, {248, 255}, {16, 24}, {246, 254}, {245, 253}, {134, 142}, {135, 143}, {16, 25}, {132, 142}, {212, 222}, {134, 140}, {17, 26}, {244, 255}, {48, 59}, {18, 25}, {132, 143}, {7, 11}, {242, 254}, {241, 253}, {211, 223}, {209, 221}, {51, 63}, {133, 137}, {135, 138}, {131, 141}, {49, 62}, {50, 61}, {11, 27}, {207, 223}, {14, 30}, {13, 29}, {12, 28}, {200, 218}, {47, 60}, {232, 251}, {206, 221}, {205, 222}, {196, 215}, {131, 144}, {15, 26}, {195, 214}, {192, 213}, {130, 151}, {133, 144}, {15, 24}, {207, 216}, {194, 213}, {129, 150}, {128, 152}, {228, 252}, {227, 251}, {226, 250}, {225, 249}, {193, 216}, {206, 215}, {197, 220}, {128, 155}, {231, 252}, {205, 214}, {129, 154}, {229, 249}, {230, 250}, {198, 219}, {130, 156}, {199, 217}, {224, 255}, {193, 225}, {222, 254}, {221, 253}, {218, 250}, {217, 249}, {210, 242}, {196, 228}, {195, 227}, {194, 226}, {209, 243}, {136, 171}, {203, 232}, {212, 241}, {15, 41}, {200, 239}, {220, 251}, {219, 252}, {211, 244}, {197, 237}, {198, 238}, {15, 38}, {203, 226}, {134, 172}, {192, 235}, {204, 231}, {202, 225}, {133, 169}, {202, 230}, {201, 229}, {135, 170}, {201, 228}, {204, 227}, {208, 224}, {17, 35}, {210, 224}, {16, 37}, {18, 36}, {16, 39}, {199, 240}, {18, 42}, {17, 40}, {26, 90}, {25, 88}, {36, 103}, {182, 245}, {181, 246}, {179, 240}, {43, 104}, {39, 100}, {19, 87}, {167, 227}, {166, 226}, {165, 225}, {51, 119}, {30, 90}, {28, 89}, {44, 105}, {29, 88}, {45, 106}, {35, 106}, {46, 103}, {144, 217}, {33, 107}, {40, 99}, {164, 239}, {27, 87}, {168, 228}, {162, 238}, {161, 237}, {52, 120}, {37, 105}, {31, 83}, {21, 88}, {20, 90}, {38, 104}, {32, 110}, {23, 89}, {22, 89}, {184, 247}, {183, 248}, {175, 224}, {54, 121}, {53, 122}, {42, 101}, {41, 102}, {34, 109}, {31, 80}, {24, 87}, {187, 235}, {141, 220}, {190, 236}, {163, 240}, {187, 232}, {185, 234}, {142, 218}, {189, 233}, {143, 219}, {188, 233}, {191, 234}, {186, 236}, {160, 247}, {6, 94}, {171, 243}, {7, 95}, {6, 92}, {6, 93}, {188, 231}, {180, 239}, {169, 242}, {177, 237}, {186, 230}, {185, 229}, {178, 238}, {6, 91}, {172, 241}, {170, 244}, {30, 126}, {49, 81}, {48, 80}, {45, 77}, {44, 76}, {147, 243}, {19, 114}, {184, 217}, {43, 74}, {40, 73}, {29, 124}, {22, 116}, {42, 72}, {41, 75}, {20, 119}, {21, 118}, {145, 242}, {40, 76}, {44, 72}, {42, 78}, {20, 113}, {46, 75}, {43, 78}, {21, 112}, {148, 241}, {19, 117}, {190, 216}, {27, 125}, {146, 244}, {20, 115}, {159, 248}, {46, 73}, {28, 123}, {8, 96}, {191, 215}, {158, 246}, {23, 127}, {10, 98}, {9, 97}, {157, 245}, {47, 70}, {181, 220}, {19, 121}, {49, 91}, {45, 71}, {39, 77}, {189, 214}, {35, 79}, {34, 79}, {183, 218}, {182, 219}, {48, 93}, {39, 74}, {22, 120}, {50, 92}, {41, 71}, {21, 122}, {176, 223}, {35, 83}, {174, 222}, {173, 221}, {54, 70}, {51, 67}, {37, 85}, {32, 81}, {53, 68}, {52, 69}, {47, 94}, {36, 86}, {38, 84}, {152, 234}, {31, 108}, {48, 67}, {33, 82}, {139, 248}, {155, 232}, {7, 115}, {54, 66}, {53, 65}, {52, 64}, {49, 69}, {33, 84}, {37, 80}, {32, 86}, {50, 68}, {36, 82}, {34, 85}, {38, 81}, {7, 127}, {52, 76}, {51, 75}, {44, 84}, {43, 83}, {22, 111}, {45, 86}, {54, 77}, {53, 78}, {46, 85}, {140, 247}, {151, 236}, {156, 231}, {137, 245}, {138, 246}, {153, 229}, {154, 230}, {8, 117}, {50, 79}, {47, 82}, {10, 116}, {149, 235}, {9, 118}, {150, 233}, {73, 201}, {74, 203}, {60, 184}, {72, 204}, {63, 186}, {69, 192}, {10, 130}, {60, 180}, {59, 179}, {8, 129}, {9, 128}, {61, 183}, {62, 181}, {61, 177}, {62, 178}, {59, 182}, {71, 202}, {55, 166}, {58, 168}, {65, 211}, {64, 210}, {66, 209}, {63, 170}, {24, 128}, {27, 131}, {29, 132}, {30, 132}, {31, 133}, {25, 130}, {26, 129}, {57, 165}, {28, 131}, {56, 167}, {101, 192}, {110, 200}, {32, 135}, {33, 134}, {108, 197}, {34, 136}, {109, 199}, {111, 196}, {107, 198}, {113, 193}, {114, 194}, {112, 195}, {12, 204}, {92, 156}, {124, 188}, {11, 202}, {94, 159}, {96, 161}, {98, 163}, {13, 207}, {91, 153}, {92, 158}, {123, 185}, {14, 205}, {97, 162}, {126, 186}, {11, 206}, {94, 155}, {13, 203}, {91, 157}, {125, 187}, {14, 201}, {93, 154}, {95, 152}, {104, 160}, {126, 176}, {117, 165}, {118, 166}, {119, 167}, {121, 168}, {124, 174}, {125, 175}, {116, 167}, {98, 183}, {96, 182}, {119, 161}, {123, 173}, {97, 184}, {102, 191}, {122, 163}, {100, 190}, {115, 168}, {121, 162}, {12, 208}, {120, 164}, {125, 160}, {99, 189}, {120, 166}, {122, 165}, {74, 170}, {81, 177}, {114, 146}, {72, 169}, {82, 179}, {112, 145}, {114, 147}, {80, 178}, {112, 146}, {113, 147}, {104, 139}, {105, 138}, {124, 159}, {126, 157}, {87, 179}, {73, 172}, {85, 176}, {113, 148}, {123, 158}, {106, 140}, {127, 153}, {59, 211}, {75, 163}, {89, 177}, {90, 178}, {102, 142}, {57, 208}, {77, 164}, {61, 212}, {100, 141}, {95, 181}, {101, 143}, {127, 149}, {63, 212}, {69, 174}, {68, 175}, {66, 169}, {64, 171}, {71, 171}, {88, 180}, {65, 172}, {60, 210}, {76, 162}, {67, 173}, {103, 137}, {62, 209}, {78, 161}, {99, 147}, {108, 156}, {57, 200}, {101, 148}, {55, 197}, {107, 153}, {99, 144}, {97, 149}, {98, 150}, {102, 146}, {58, 207}, {100, 145}, {109, 152}, {110, 155}, {55, 193}, {70, 176}, {56, 206}, {105, 159}, {96, 151}, {106, 157}, {109, 154}, {4, 252}, {3, 250}, {84, 173}, {70, 191}, {66, 187}, {64, 185}, {58, 195}, {86, 175}, {103, 158}, {108, 149}, {110, 151}, {117, 140}, {4, 254}, {68, 190}, {56, 194}, {55, 205}, {5, 255}, {115, 137}, {2, 249}, {79, 180}, {95, 164}, {111, 148}, {57, 196}, {83, 174}, {65, 188}, {58, 199}, {93, 160}, {107, 150}, {118, 139}, {5, 251}, {67, 189}, {56, 198}, {111, 145}, {116, 138}, {2, 253}, {4, 260}, {3, 258}, {2, 257}, {3, 256}, {5, 259}, {213, 257}, {215, 259}, {214, 258}, {216, 260}, {223, 256}, {233, 257}, {234, 258}, {239, 260}, {237, 257}, {238, 258}, {235, 260}, {236, 259}, {240, 259}, {243, 256}, {247, 256} }>;

(II) A more general form is to represent the graph as the orbit of {1, 3} under the group generated by the following permutations:

a: (2, 3, 5, 4)(7, 8, 9, 10)(11, 13, 12, 14)(15, 16, 18, 17)(19, 21, 22, 20)(23, 26, 24, 25)(27, 29, 28, 30)(31, 33, 34, 32)(35, 38, 37, 36)(39, 42, 40, 41)(43, 44, 46, 45)(47, 50, 49, 48)(51, 54, 53, 52)(55, 56, 58, 57)(59, 60, 61, 62)(63, 66, 65, 64)(67, 70, 68, 69)(71, 74, 72, 73)(75, 77, 78, 76)(79, 81, 80, 82)(83, 84, 85, 86)(87, 88, 89, 90)(91, 93, 94, 92)(95, 96, 97, 98)(99, 102, 100, 101)(103, 106, 104, 105)(107, 109, 110, 108)(111, 113, 114, 112)(115, 117, 118, 116)(119, 121, 122, 120)(123, 126, 125, 124)(127, 129, 128, 130)(131, 132)(133, 134, 136, 135)(137, 140, 139, 138)(141, 143, 144, 142)(145, 148, 147, 146)(149, 150, 152, 151)(153, 154, 155, 156)(157, 160, 159, 158)(161, 162, 163, 164)(165, 166, 167, 168)(169, 172, 171, 170)(173, 176, 175, 174)(177, 178, 179, 180)(181, 182, 184, 183)(185, 186, 187, 188)(189, 191, 190, 192)(193, 194, 195, 196)(197, 198, 199, 200)(201, 202, 203, 204)(205, 206, 207, 208)(209, 211, 210, 212)(213, 214, 215, 216)(217, 218, 220, 219)(221, 223, 224, 222)(225, 226, 227, 228)(229, 230, 232, 231)(233, 234, 236, 235)(237, 238, 240, 239)(241, 243, 244, 242)(245, 247, 248, 246)(249, 250, 251, 252)(253, 256, 255, 254)(257, 258, 259, 260)
b: (1, 6)(2, 92, 5, 93)(3, 91, 4, 94)(7, 169, 9, 171)(8, 172, 10, 170)(11, 133, 12, 136)(13, 134, 14, 135)(15, 113, 18, 112)(16, 114, 17, 111)(19, 40, 22, 39)(20, 42, 21, 41)(23, 145, 24, 147)(25, 146, 26, 148)(27, 144, 28, 141)(29, 142, 30, 143)(31, 208, 34, 206)(32, 207, 33, 205)(35, 196, 37, 194)(36, 195, 38, 193)(43, 165, 46, 167)(44, 166, 45, 168)(47, 258, 49, 260)(48, 257, 50, 259)(51, 161, 53, 163)(52, 164, 54, 162)(55, 86, 58, 84)(56, 83, 57, 85)(59, 233, 61, 236)(60, 234, 62, 235)(63, 96, 65, 98)(64, 95, 66, 97)(67, 237, 68, 240)(69, 239, 70, 238)(71, 115, 72, 118)(73, 116, 74, 117)(75, 119, 78, 122)(76, 120, 77, 121)(79, 215, 80, 213)(81, 216, 82, 214)(87, 99, 89, 100)(88, 102, 90, 101)(103, 227, 104, 225)(105, 226, 106, 228)(107, 222, 110, 223)(108, 224, 109, 221)(123, 220, 125, 217)(124, 218, 126, 219)(127, 242, 128, 243)(129, 241, 130, 244)(137, 204, 139, 202)(138, 203, 140, 201)(149, 210, 152, 209)(150, 212, 151, 211)(153, 254, 155, 256)(154, 253, 156, 255)(157, 252, 159, 250)(158, 251, 160, 249)(173, 197, 175, 199)(174, 200, 176, 198)(177, 190, 179, 189)(178, 192, 180, 191)(181, 187, 184, 185)(182, 188, 183, 186)(229, 246, 232, 247)(230, 245, 231, 248)
c: (1, 7)(2, 11)(3, 115)(4, 95)(5, 127)(6, 151)(8, 48)(9, 204)(10, 47)(13, 80)(14, 70)(15, 65)(16, 124)(17, 244)(18, 248)(19, 189)(20, 256)(21, 44)(22, 210)(23, 255)(24, 188)(25, 159)(26, 211)(27, 257)(28, 208)(29, 37)(30, 176)(31, 203)(32, 50)(33, 163)(34, 143)(35, 170)(36, 183)(38, 53)(39, 174)(40, 146)(41, 172)(42, 139)(45, 212)(46, 142)(49, 190)(51, 140)(52, 145)(54, 205)(55, 66)(56, 217)(57, 123)(58, 238)(59, 129)(60, 116)(61, 86)(62, 216)(63, 106)(64, 111)(67, 117)(68, 81)(69, 100)(71, 241)(72, 118)(73, 102)(74, 83)(75, 134)(76, 112)(77, 222)(78, 104)(79, 135)(82, 98)(84, 122)(85, 132)(87, 233)(88, 105)(89, 224)(90, 223)(91, 236)(92, 110)(93, 96)(94, 130)(97, 227)(99, 114)(101, 136)(103, 218)(107, 240)(108, 232)(109, 219)(113, 243)(119, 247)(120, 242)(121, 214)(125, 237)(128, 231)(131, 213)(133, 226)(137, 250)(138, 180)(141, 192)(144, 194)(148, 171)(149, 251)(150, 179)(152, 252)(153, 259)(154, 182)(155, 156)(157, 186)(158, 200)(160, 161)(162, 195)(164, 254)(165, 173)(166, 169)(167, 184)(168, 258)(175, 177)(178, 207)(181, 260)(185, 196)(187, 197)(191, 201)(193, 209)(198, 199)(202, 253)(206, 249)(215, 229)(220, 235)(221, 225)(228, 234)(230, 245)(239, 246)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 260, 17 ]
260
-1 2 3 4 5
-2 253 1 257 249
-3 1 256 258 250
-4 1 254 260 252
-5 1 255 259 251
-6 91 92 93 94
-7 11 115 127 95
-8 13 117 96 129
-9 12 128 118 97
-10 14 116 130 98
-11 202 27 7 206
-12 28 204 9 208
-13 203 29 8 207
-14 201 205 30 10
-15 24 26 38 41
-16 24 25 37 39
-17 23 35 26 40
-18 23 25 36 42
-19 121 114 117 87
-20 90 113 115 119
-21 88 122 112 118
-22 89 111 116 120
-23 89 17 127 18
-24 15 16 128 87
-25 88 16 18 130
-26 90 15 17 129
-27 11 125 87 131
-28 12 89 123 131
-29 88 132 13 124
-30 132 90 14 126
-31 133 80 83 108
-32 110 135 81 86
-33 134 82 84 107
-34 79 136 85 109
-35 79 17 83 106
-36 103 82 18 86
-37 80 16 105 85
-38 15 81 104 84
-39 77 100 16 74
-40 99 17 73 76
-41 102 15 71 75
-42 78 101 72 18
-43 78 104 83 74
-44 72 105 84 76
-45 77 71 106 86
-46 103 73 85 75
-47 70 60 82 94
-48 67 80 59 93
-49 69 91 81 62
-50 68 79 92 61
-51 67 63 75 119
-52 69 64 76 120
-53 78 122 68 65
-54 66 77 121 70
-55 166 193 205 197
-56 198 167 194 206
-57 165 200 196 208
-58 199 168 195 207
-59 211 179 48 182
-60 210 47 180 184
-61 177 212 50 183
-62 209 178 49 181
-63 212 170 51 186
-64 210 171 52 185
-65 188 211 172 53
-66 187 209 169 54
-67 189 48 51 173
-68 190 50 53 175
-69 49 192 52 174
-70 176 47 191 54
-71 45 202 171 41
-72 44 169 204 42
-73 46 201 40 172
-74 170 203 39 43
-75 46 51 41 163
-76 44 40 52 162
-77 45 39 54 164
-78 161 42 53 43
-79 34 35 180 50
-80 178 37 48 31
-81 177 38 49 32
-82 33 36 47 179
-83 35 31 174 43
-84 33 44 38 173
-85 176 34 46 37
-86 45 36 32 175
-87 24 179 27 19
-88 25 180 29 21
-89 22 23 177 28
-90 178 26 30 20
-91 157 49 6 153
-92 156 158 6 50
-93 154 48 6 160
-94 155 47 159 6
-95 181 7 152 164
-96 182 161 8 151
-97 149 162 184 9
-98 150 183 163 10
-99 144 189 147 40
-100 145 190 39 141
-101 143 148 192 42
-102 146 191 41 142
-103 46 36 158 137
-104 38 160 139 43
-105 44 37 159 138
-106 45 35 157 140
-107 33 198 150 153
-108 156 149 31 197
-109 154 34 199 152
-110 155 200 151 32
-111 22 145 148 196
-112 145 146 195 21
-113 147 148 193 20
-114 146 147 194 19
-115 168 137 7 20
-116 22 167 138 10
-117 165 8 19 140
-118 166 139 9 21
-119 167 51 161 20
-120 22 166 52 164
-121 168 19 162 54
-122 165 53 163 21
-123 158 28 173 185
-124 188 159 29 174
-125 187 27 160 175
-126 176 157 30 186
-127 23 149 7 153
-128 155 24 9 152
-129 154 26 150 8
-130 156 25 151 10
-131 144 27 28 141
-132 143 29 30 142
-133 144 169 137 31
-134 33 172 140 142
-135 143 170 138 32
-136 34 171 139 141
-137 133 245 103 115
-138 135 246 105 116
-139 136 104 248 118
-140 134 247 106 117
-141 220 100 136 131
-142 132 134 102 218
-143 132 101 135 219
-144 99 133 217 131
-145 242 100 111 112
-146 112 244 102 114
-147 99 243 113 114
-148 111 101 113 241
-149 235 127 97 108
-150 233 107 129 98
-151 110 236 96 130
-152 234 95 128 109
-153 91 127 107 229
-154 93 129 109 230
-155 110 232 94 128
-156 231 92 108 130
-157 91 245 126 106
-158 123 92 103 246
-159 124 94 105 248
-160 125 93 104 247
-161 78 237 96 119
-162 121 238 97 76
-163 122 75 240 98
-164 77 95 239 120
-165 122 57 225 117
-166 55 226 118 120
-167 56 116 227 119
-168 121 58 115 228
-169 66 242 133 72
-170 244 135 63 74
-171 243 136 71 64
-172 134 73 65 241
-173 67 221 123 84
-174 222 69 124 83
-175 68 125 224 86
-176 223 70 126 85
-177 89 81 61 237
-178 90 80 62 238
-179 59 82 240 87
-180 88 79 60 239
-181 220 246 62 95
-182 245 59 96 219
-183 61 248 218 98
-184 60 247 217 97
-185 123 234 64 229
-186 126 236 63 230
-187 66 232 125 235
-188 231 233 124 65
-189 99 67 233 214
-190 100 68 236 216
-191 102 234 70 215
-192 101 69 213 235
-193 55 113 225 216
-194 56 114 213 226
-195 112 58 214 227
-196 111 57 215 228
-197 55 220 237 108
-198 56 238 107 219
-199 58 217 240 109
-200 110 57 239 218
-201 14 73 228 229
-202 11 71 225 230
-203 232 13 226 74
-204 231 12 72 227
-205 55 222 14 214
-206 11 56 221 215
-207 13 58 223 216
-208 12 57 213 224
-209 66 221 243 62
-210 242 224 60 64
-211 244 223 59 65
-212 222 61 63 241
-213 257 192 194 208
-214 189 258 205 195
-215 191 259 206 196
-216 190 193 260 207
-217 144 199 249 184
-218 200 183 250 142
-219 143 198 182 252
-220 181 141 251 197
-221 209 253 173 206
-222 254 212 205 174
-223 176 211 256 207
-224 210 255 175 208
-225 165 202 193 249
-226 166 203 194 250
-227 167 204 195 251
-228 168 201 196 252
-229 201 249 185 153
-230 154 202 250 186
-231 188 156 204 252
-232 187 155 203 251
-233 188 189 257 150
-234 191 258 152 185
-235 187 192 149 260
-236 190 259 151 186
-237 177 257 161 197
-238 198 178 258 162
-239 200 180 260 164
-240 199 179 259 163
-241 253 212 148 172
-242 210 254 145 169
-243 209 256 147 171
-244 211 255 146 170
-245 253 157 137 182
-246 254 158 181 138
-247 256 160 140 184
-248 255 159 139 183
-249 2 225 217 229
-250 3 226 218 230
-251 220 232 5 227
-252 231 4 228 219
-253 221 2 245 241
-254 242 222 4 246
-255 244 224 5 248
-256 243 3 223 247
-257 2 233 213 237
-258 3 234 214 238
-259 5 236 215 240
-260 4 235 216 239
0

**************