[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 261, 1 ] =
C_261(1,28).
(I) Following is a form readable by MAGMA:
g:=Graph<261|{ {2, 3}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252,
253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241},
{238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226,
227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215},
{212, 213}, {210, 211}, {208, 209}, {206, 207}, {114, 115}, {112, 113}, {110,
111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96,
97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80,
81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {4,
5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21},
{22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37},
{38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53},
{54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {116, 117}, {118,
119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131},
{132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144,
145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157},
{158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170,
171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183},
{184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196,
197}, {198, 199}, {200, 201}, {202, 203}, {204, 205}, {1, 2}, {257, 258}, {253,
254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230},
{225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {113,
114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85,
86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {5, 6}, {9, 10}, {13,
14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45,
46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {117, 118}, {121, 122}, {125, 126},
{129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153,
154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178},
{181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201, 202}, {3, 4},
{259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211,
212}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68},
{11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {123,
124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172},
{179, 180}, {187, 188}, {195, 196}, {203, 204}, {7, 8}, {247, 248}, {231, 232},
{215, 216}, {103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {119,
120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {1, 29}, {227,
255}, {226, 254}, {225, 253}, {224, 252}, {99, 127}, {98, 126}, {97, 125}, {96,
124}, {67, 95}, {66, 94}, {65, 93}, {64, 92}, {2, 30}, {3, 31}, {32, 60}, {33,
61}, {34, 62}, {35, 63}, {128, 156}, {129, 157}, {130, 158}, {131, 159}, {160,
188}, {161, 189}, {162, 190}, {163, 191}, {192, 220}, {193, 221}, {194, 222},
{195, 223}, {15, 16}, {239, 240}, {207, 208}, {111, 112}, {79, 80}, {47, 48},
{143, 144}, {175, 176}, {4, 32}, {223, 251}, {222, 250}, {221, 249}, {220, 248},
{215, 243}, {214, 242}, {213, 241}, {212, 240}, {207, 235}, {206, 234}, {205,
233}, {204, 232}, {95, 123}, {94, 122}, {93, 121}, {92, 120}, {87, 115}, {86,
114}, {85, 113}, {84, 112}, {79, 107}, {78, 106}, {77, 105}, {76, 104}, {71,
99}, {70, 98}, {69, 97}, {68, 96}, {5, 33}, {6, 34}, {7, 35}, {12, 40}, {13,
41}, {14, 42}, {15, 43}, {20, 48}, {21, 49}, {22, 50}, {23, 51}, {28, 56}, {29,
57}, {30, 58}, {31, 59}, {132, 160}, {133, 161}, {134, 162}, {135, 163}, {140,
168}, {141, 169}, {142, 170}, {143, 171}, {148, 176}, {149, 177}, {150, 178},
{151, 179}, {156, 184}, {157, 185}, {158, 186}, {159, 187}, {196, 224}, {197,
225}, {198, 226}, {199, 227}, {8, 36}, {219, 247}, {218, 246}, {217, 245}, {216,
244}, {91, 119}, {90, 118}, {89, 117}, {88, 116}, {75, 103}, {74, 102}, {73,
101}, {72, 100}, {9, 37}, {10, 38}, {11, 39}, {24, 52}, {25, 53}, {26, 54}, {27,
55}, {136, 164}, {137, 165}, {138, 166}, {139, 167}, {152, 180}, {153, 181},
{154, 182}, {155, 183}, {200, 228}, {201, 229}, {202, 230}, {203, 231}, {16,
44}, {211, 239}, {210, 238}, {209, 237}, {208, 236}, {83, 111}, {82, 110}, {81,
109}, {80, 108}, {17, 45}, {18, 46}, {19, 47}, {144, 172}, {145, 173}, {146,
174}, {147, 175}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {36, 64}, {37,
65}, {38, 66}, {39, 67}, {44, 72}, {45, 73}, {46, 74}, {47, 75}, {52, 80}, {53,
81}, {54, 82}, {55, 83}, {60, 88}, {61, 89}, {62, 90}, {63, 91}, {164, 192},
{165, 193}, {166, 194}, {167, 195}, {172, 200}, {173, 201}, {174, 202}, {175,
203}, {180, 208}, {181, 209}, {182, 210}, {183, 211}, {188, 216}, {189, 217},
{190, 218}, {191, 219}, {40, 68}, {41, 69}, {42, 70}, {43, 71}, {56, 84}, {57,
85}, {58, 86}, {59, 87}, {168, 196}, {169, 197}, {170, 198}, {171, 199}, {184,
212}, {185, 213}, {186, 214}, {187, 215}, {48, 76}, {49, 77}, {50, 78}, {51,
79}, {176, 204}, {177, 205}, {178, 206}, {179, 207}, {63, 64}, {191, 192}, {100,
128}, {111, 139}, {110, 138}, {109, 137}, {108, 136}, {103, 131}, {102, 130},
{101, 129}, {116, 144}, {117, 145}, {118, 146}, {119, 147}, {124, 152}, {125,
153}, {126, 154}, {127, 155}, {2, 235}, {4, 237}, {6, 239}, {16, 249}, {18,
251}, {20, 253}, {22, 255}, {1, 234}, {5, 238}, {17, 250}, {21, 254}, {104,
132}, {107, 135}, {106, 134}, {105, 133}, {120, 148}, {121, 149}, {122, 150},
{123, 151}, {3, 236}, {19, 252}, {7, 240}, {15, 248}, {8, 241}, {10, 243}, {12,
245}, {14, 247}, {9, 242}, {13, 246}, {112, 140}, {115, 143}, {114, 142}, {113,
141}, {11, 244}, {127, 128}, {1, 261}, {23, 256}, {24, 257}, {26, 259}, {28,
261}, {25, 258}, {27, 260}, {228, 256}, {231, 259}, {230, 258}, {229, 257},
{232, 260}, {233, 261}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 29)(3, 57)(4, 85)(5, 113)(6, 141)(7, 169)(8, 197)(9, 225)(10, 253)(11,
20)(12, 48)(13, 76)(14, 104)(15, 132)(16, 160)(17, 188)(18, 216)(19, 244)(21,
39)(22, 67)(23, 95)(24, 123)(25, 151)(26, 179)(27, 207)(28, 235)(31, 58)(32,
86)(33, 114)(34, 142)(35, 170)(36, 198)(37, 226)(38, 254)(40, 49)(41, 77)(42,
105)(43, 133)(44, 161)(45, 189)(46, 217)(47, 245)(50, 68)(51, 96)(52, 124)(53,
152)(54, 180)(55, 208)(56, 236)(60, 87)(61, 115)(62, 143)(63, 171)(64, 199)(65,
227)(66, 255)(69, 78)(70, 106)(71, 134)(72, 162)(73, 190)(74, 218)(75, 246)(79,
97)(80, 125)(81, 153)(82, 181)(83, 209)(84, 237)(89, 116)(90, 144)(91, 172)(92,
200)(93, 228)(94, 256)(98, 107)(99, 135)(100, 163)(101, 191)(102, 219)(103,
247)(108, 126)(109, 154)(110, 182)(111, 210)(112, 238)(118, 145)(119, 173)(120,
201)(121, 229)(122, 257)(127, 136)(128, 164)(129, 192)(130, 220)(131, 248)(137,
155)(138, 183)(139, 211)(140, 239)(147, 174)(148, 202)(149, 230)(150, 258)(156,
165)(157, 193)(158, 221)(159, 249)(166, 184)(167, 212)(168, 240)(176, 203)(177,
231)(178, 259)(185, 194)(186, 222)(187, 250)(195, 213)(196, 241)(205, 232)(206,
260)(214, 223)(215, 251)(224, 242)(234, 261)(243, 252)
c: (2, 234)(3, 206)(4, 178)(5, 150)(6, 122)(7, 94)(8, 66)(9, 38)(11, 243)(12,
215)(13, 187)(14, 159)(15, 131)(16, 103)(17, 75)(18, 47)(20, 252)(21, 224)(22,
196)(23, 168)(24, 140)(25, 112)(26, 84)(27, 56)(29, 261)(30, 233)(31, 205)(32,
177)(33, 149)(34, 121)(35, 93)(36, 65)(39, 242)(40, 214)(41, 186)(42, 158)(43,
130)(44, 102)(45, 74)(48, 251)(49, 223)(50, 195)(51, 167)(52, 139)(53, 111)(54,
83)(57, 260)(58, 232)(59, 204)(60, 176)(61, 148)(62, 120)(63, 92)(67, 241)(68,
213)(69, 185)(70, 157)(71, 129)(72, 101)(76, 250)(77, 222)(78, 194)(79, 166)(80,
138)(81, 110)(85, 259)(86, 231)(87, 203)(88, 175)(89, 147)(90, 119)(95, 240)(96,
212)(97, 184)(98, 156)(99, 128)(104, 249)(105, 221)(106, 193)(107, 165)(108,
137)(113, 258)(114, 230)(115, 202)(116, 174)(117, 146)(123, 239)(124, 211)(125,
183)(126, 155)(132, 248)(133, 220)(134, 192)(135, 164)(141, 257)(142, 229)(143,
201)(144, 173)(151, 238)(152, 210)(153, 182)(160, 247)(161, 219)(162, 191)(169,
256)(170, 228)(171, 200)(179, 237)(180, 209)(188, 246)(189, 218)(197, 255)(198,
227)(207, 236)(216, 245)(225, 254)
C4[ 261, 1 ]
261
-1 2 234 29 261
-2 1 3 235 30
-3 2 4 236 31
-4 3 5 237 32
-5 33 4 6 238
-6 34 5 7 239
-7 35 6 8 240
-8 36 7 9 241
-9 242 37 8 10
-10 11 243 38 9
-11 12 244 39 10
-12 11 13 245 40
-13 12 14 246 41
-14 13 15 247 42
-15 14 16 248 43
-16 44 15 17 249
-17 45 16 18 250
-18 46 17 19 251
-19 47 18 20 252
-20 253 48 19 21
-21 22 254 49 20
-22 23 255 50 21
-23 22 24 256 51
-24 23 25 257 52
-25 24 26 258 53
-26 25 27 259 54
-27 55 26 28 260
-28 56 27 29 261
-29 1 57 28 30
-30 2 58 29 31
-31 3 59 30 32
-32 33 4 60 31
-33 34 5 61 32
-34 33 35 6 62
-35 34 36 7 63
-36 35 37 8 64
-37 36 38 9 65
-38 66 37 39 10
-39 11 67 38 40
-40 12 68 39 41
-41 13 69 40 42
-42 14 70 41 43
-43 44 15 71 42
-44 45 16 72 43
-45 44 46 17 73
-46 45 47 18 74
-47 46 48 19 75
-48 47 49 20 76
-49 77 48 50 21
-50 22 78 49 51
-51 23 79 50 52
-52 24 80 51 53
-53 25 81 52 54
-54 55 26 82 53
-55 56 27 83 54
-56 55 57 28 84
-57 56 58 29 85
-58 57 59 30 86
-59 58 60 31 87
-60 88 59 61 32
-61 33 89 60 62
-62 34 90 61 63
-63 35 91 62 64
-64 36 92 63 65
-65 66 37 93 64
-66 67 38 94 65
-67 66 68 39 95
-68 67 69 40 96
-69 68 70 41 97
-70 69 71 42 98
-71 99 70 72 43
-72 44 100 71 73
-73 45 101 72 74
-74 46 102 73 75
-75 47 103 74 76
-76 77 48 104 75
-77 78 49 105 76
-78 77 79 50 106
-79 78 80 51 107
-80 79 81 52 108
-81 80 82 53 109
-82 110 81 83 54
-83 55 111 82 84
-84 56 112 83 85
-85 57 113 84 86
-86 58 114 85 87
-87 88 59 115 86
-88 89 60 116 87
-89 88 90 61 117
-90 89 91 62 118
-91 90 92 63 119
-92 91 93 64 120
-93 121 92 94 65
-94 66 122 93 95
-95 67 123 94 96
-96 68 124 95 97
-97 69 125 96 98
-98 99 70 126 97
-99 100 71 127 98
-100 99 101 72 128
-101 100 102 73 129
-102 101 103 74 130
-103 102 104 75 131
-104 132 103 105 76
-105 77 133 104 106
-106 78 134 105 107
-107 79 135 106 108
-108 80 136 107 109
-109 110 81 137 108
-110 111 82 138 109
-111 110 112 83 139
-112 111 113 84 140
-113 112 114 85 141
-114 113 115 86 142
-115 143 114 116 87
-116 88 144 115 117
-117 89 145 116 118
-118 90 146 117 119
-119 91 147 118 120
-120 121 92 148 119
-121 122 93 149 120
-122 121 123 94 150
-123 122 124 95 151
-124 123 125 96 152
-125 124 126 97 153
-126 154 125 127 98
-127 99 155 126 128
-128 100 156 127 129
-129 101 157 128 130
-130 102 158 129 131
-131 132 103 159 130
-132 133 104 160 131
-133 132 134 105 161
-134 133 135 106 162
-135 134 136 107 163
-136 135 137 108 164
-137 165 136 138 109
-138 110 166 137 139
-139 111 167 138 140
-140 112 168 139 141
-141 113 169 140 142
-142 143 114 170 141
-143 144 115 171 142
-144 143 145 116 172
-145 144 146 117 173
-146 145 147 118 174
-147 146 148 119 175
-148 176 147 149 120
-149 121 177 148 150
-150 122 178 149 151
-151 123 179 150 152
-152 124 180 151 153
-153 154 125 181 152
-154 155 126 182 153
-155 154 156 127 183
-156 155 157 128 184
-157 156 158 129 185
-158 157 159 130 186
-159 187 158 160 131
-160 132 188 159 161
-161 133 189 160 162
-162 134 190 161 163
-163 135 191 162 164
-164 165 136 192 163
-165 166 137 193 164
-166 165 167 138 194
-167 166 168 139 195
-168 167 169 140 196
-169 168 170 141 197
-170 198 169 171 142
-171 143 199 170 172
-172 144 200 171 173
-173 145 201 172 174
-174 146 202 173 175
-175 176 147 203 174
-176 177 148 204 175
-177 176 178 149 205
-178 177 179 150 206
-179 178 180 151 207
-180 179 181 152 208
-181 209 180 182 153
-182 154 210 181 183
-183 155 211 182 184
-184 156 212 183 185
-185 157 213 184 186
-186 187 158 214 185
-187 188 159 215 186
-188 187 189 160 216
-189 188 190 161 217
-190 189 191 162 218
-191 190 192 163 219
-192 220 191 193 164
-193 165 221 192 194
-194 166 222 193 195
-195 167 223 194 196
-196 168 224 195 197
-197 198 169 225 196
-198 199 170 226 197
-199 198 200 171 227
-200 199 201 172 228
-201 200 202 173 229
-202 201 203 174 230
-203 231 202 204 175
-204 176 232 203 205
-205 177 233 204 206
-206 178 234 205 207
-207 179 235 206 208
-208 209 180 236 207
-209 210 181 237 208
-210 209 211 182 238
-211 210 212 183 239
-212 211 213 184 240
-213 212 214 185 241
-214 242 213 215 186
-215 187 243 214 216
-216 188 244 215 217
-217 189 245 216 218
-218 190 246 217 219
-219 220 191 247 218
-220 221 192 248 219
-221 220 222 193 249
-222 221 223 194 250
-223 222 224 195 251
-224 223 225 196 252
-225 253 224 226 197
-226 198 254 225 227
-227 199 255 226 228
-228 200 256 227 229
-229 201 257 228 230
-230 231 202 258 229
-231 232 203 259 230
-232 231 233 204 260
-233 232 234 205 261
-234 1 233 235 206
-235 2 234 236 207
-236 3 235 237 208
-237 209 4 236 238
-238 210 5 237 239
-239 211 6 238 240
-240 212 7 239 241
-241 242 213 8 240
-242 243 214 9 241
-243 242 244 215 10
-244 11 243 245 216
-245 12 244 246 217
-246 13 245 247 218
-247 14 246 248 219
-248 220 15 247 249
-249 221 16 248 250
-250 222 17 249 251
-251 223 18 250 252
-252 253 224 19 251
-253 254 225 20 252
-254 253 255 226 21
-255 22 254 256 227
-256 23 255 257 228
-257 24 256 258 229
-258 25 257 259 230
-259 231 26 258 260
-260 232 27 259 261
-261 1 233 28 260
0