[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 262, 1 ] =
W(131,2).
(I) Following is a form readable by MAGMA:
g:=Graph<262|{ {2, 3}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252,
253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241},
{238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226,
227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215},
{212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200,
201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189},
{186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174,
175}, {172, 173}, {170, 171}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75},
{72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59},
{56, 57}, {54, 55}, {52, 53}, {50, 51}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12,
13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28,
29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44,
45}, {46, 47}, {48, 49}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94,
95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108,
109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121},
{122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134,
135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147},
{148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160,
161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {1, 2}, {261, 262}, {257,
258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234},
{229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205,
206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182},
{177, 178}, {173, 174}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61,
62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25,
26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {85, 86}, {89,
90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117,
118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142},
{145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169,
170}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219,
220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172},
{83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28},
{35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124},
{131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {7, 8}, {247, 248},
{231, 232}, {215, 216}, {199, 200}, {183, 184}, {71, 72}, {55, 56}, {23, 24},
{39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168},
{15, 16}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112},
{143, 144}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {191, 192},
{1, 131}, {81, 211}, {80, 210}, {77, 207}, {76, 206}, {73, 203}, {72, 202}, {69,
199}, {68, 198}, {65, 195}, {64, 194}, {61, 191}, {60, 190}, {57, 187}, {56,
186}, {53, 183}, {52, 182}, {49, 179}, {4, 134}, {5, 135}, {8, 138}, {9, 139},
{12, 142}, {13, 143}, {16, 146}, {17, 147}, {20, 150}, {21, 151}, {24, 154},
{25, 155}, {28, 158}, {29, 159}, {32, 162}, {33, 163}, {36, 166}, {37, 167},
{40, 170}, {41, 171}, {44, 174}, {45, 175}, {48, 178}, {84, 214}, {85, 215},
{88, 218}, {89, 219}, {92, 222}, {93, 223}, {96, 226}, {97, 227}, {100, 230},
{101, 231}, {104, 234}, {105, 235}, {108, 238}, {109, 239}, {112, 242}, {113,
243}, {116, 246}, {117, 247}, {120, 250}, {121, 251}, {124, 254}, {125, 255},
{1, 133}, {82, 214}, {81, 213}, {80, 212}, {75, 207}, {74, 206}, {73, 205}, {72,
204}, {67, 199}, {66, 198}, {65, 197}, {64, 196}, {59, 191}, {58, 190}, {57,
189}, {56, 188}, {51, 183}, {50, 182}, {49, 181}, {2, 134}, {3, 135}, {8, 140},
{9, 141}, {10, 142}, {11, 143}, {16, 148}, {17, 149}, {18, 150}, {19, 151}, {24,
156}, {25, 157}, {26, 158}, {27, 159}, {32, 164}, {33, 165}, {34, 166}, {35,
167}, {40, 172}, {41, 173}, {42, 174}, {43, 175}, {48, 180}, {83, 215}, {88,
220}, {89, 221}, {90, 222}, {91, 223}, {96, 228}, {97, 229}, {98, 230}, {99,
231}, {104, 236}, {105, 237}, {106, 238}, {107, 239}, {112, 244}, {113, 245},
{114, 246}, {115, 247}, {120, 252}, {121, 253}, {122, 254}, {123, 255}, {2,
132}, {83, 213}, {82, 212}, {75, 205}, {74, 204}, {67, 197}, {66, 196}, {59,
189}, {58, 188}, {51, 181}, {50, 180}, {3, 133}, {10, 140}, {11, 141}, {18,
148}, {19, 149}, {26, 156}, {27, 157}, {34, 164}, {35, 165}, {42, 172}, {43,
173}, {90, 220}, {91, 221}, {98, 228}, {99, 229}, {106, 236}, {107, 237}, {114,
244}, {115, 245}, {122, 252}, {123, 253}, {4, 136}, {71, 203}, {70, 202}, {69,
201}, {68, 200}, {55, 187}, {54, 186}, {53, 185}, {52, 184}, {5, 137}, {6, 138},
{7, 139}, {20, 152}, {21, 153}, {22, 154}, {23, 155}, {36, 168}, {37, 169}, {38,
170}, {39, 171}, {84, 216}, {85, 217}, {86, 218}, {87, 219}, {100, 232}, {101,
233}, {102, 234}, {103, 235}, {116, 248}, {117, 249}, {118, 250}, {119, 251},
{6, 136}, {71, 201}, {70, 200}, {55, 185}, {54, 184}, {7, 137}, {22, 152}, {23,
153}, {38, 168}, {39, 169}, {86, 216}, {87, 217}, {102, 232}, {103, 233}, {118,
248}, {119, 249}, {12, 144}, {79, 211}, {78, 210}, {77, 209}, {76, 208}, {13,
145}, {14, 146}, {15, 147}, {44, 176}, {45, 177}, {46, 178}, {47, 179}, {108,
240}, {109, 241}, {110, 242}, {111, 243}, {14, 144}, {79, 209}, {78, 208}, {15,
145}, {46, 176}, {47, 177}, {110, 240}, {111, 241}, {28, 160}, {29, 161}, {30,
162}, {31, 163}, {92, 224}, {93, 225}, {94, 226}, {95, 227}, {30, 160}, {31,
161}, {94, 224}, {95, 225}, {60, 192}, {63, 195}, {62, 194}, {61, 193}, {62,
192}, {63, 193}, {127, 128}, {1, 262}, {124, 256}, {125, 257}, {126, 258}, {127,
259}, {126, 256}, {127, 257}, {128, 258}, {129, 259}, {132, 262}, {128, 260},
{129, 261}, {130, 262}, {130, 260}, {131, 261}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (10, 141) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (74, 205)
c: (120, 251)
d: (56, 187)
e: (114, 245)
f: (50, 181)
g: (106, 237)
h: (42, 173)
m: (12, 143)
n1: (46, 177)
a1: (110, 241)
b1: (76, 207)
c1: (115, 246)
d1: (51, 182)
e1: (111, 242)
f1: (47, 178)
g1: (34, 165)
h1: (98, 229)
m1: (6, 137)
n2: (70, 201)
a2: (112, 243)
b2: (48, 179)
c2: (101, 232)
d2: (37, 168)
e2: (107, 238)
f2: (43, 174)
g2: (27, 158)
h2: (91, 222)
m2: (118, 249)
n3: (54, 185)
a3: (21, 152)
b3: (85, 216)
c3: (131, 262)
d3: (117, 248)
e3: (53, 184)
f3: (31, 162)
g3: (95, 226)
h3: (29, 160)
m3: (93, 224)
n4: (66, 197)
a4: (2, 133)
b4: (2, 131)(3, 130)(4, 129)(5, 128)(6, 127)(7, 126)(8, 125)(9, 124)(10,
123)(11, 122)(12, 121)(13, 120)(14, 119)(15, 118)(16, 117)(17, 116)(18, 115)(19,
114)(20, 113)(21, 112)(22, 111)(23, 110)(24, 109)(25, 108)(26, 107)(27, 106)(28,
105)(29, 104)(30, 103)(31, 102)(32, 101)(33, 100)(34, 99)(35, 98)(36, 97)(37,
96)(38, 95)(39, 94)(40, 93)(41, 92)(42, 91)(43, 90)(44, 89)(45, 88)(46, 87)(47,
86)(48, 85)(49, 84)(50, 83)(51, 82)(52, 81)(53, 80)(54, 79)(55, 78)(56, 77)(57,
76)(58, 75)(59, 74)(60, 73)(61, 72)(62, 71)(63, 70)(64, 69)(65, 68)(66, 67)(133,
262)(134, 261)(135, 260)(136, 259)(137, 258)(138, 257)(139, 256)(140, 255)(141,
254)(142, 253)(143, 252)(144, 251)(145, 250)(146, 249)(147, 248)(148, 247)(149,
246)(150, 245)(151, 244)(152, 243)(153, 242)(154, 241)(155, 240)(156, 239)(157,
238)(158, 237)(159, 236)(160, 235)(161, 234)(162, 233)(163, 232)(164, 231)(165,
230)(166, 229)(167, 228)(168, 227)(169, 226)(170, 225)(171, 224)(172, 223)(173,
222)(174, 221)(175, 220)(176, 219)(177, 218)(178, 217)(179, 216)(180, 215)(181,
214)(182, 213)(183, 212)(184, 211)(185, 210)(186, 209)(187, 208)(188, 207)(189,
206)(190, 205)(191, 204)(192, 203)(193, 202)(194, 201)(195, 200)(196, 199)(197,
198)
c4: (119, 250)
d4: (55, 186)
e4: (33, 164)
f4: (97, 228)
g4: (25, 156)
h4: (89, 220)
m4: (63, 194)
n5: (99, 230)
a5: (35, 166)
b5: (5, 136)
c5: (69, 200)
d5: (128, 259)
e5: (100, 231)
f5: (36, 167)
g5: (30, 161)
h5: (94, 225)
m5: (127, 258)
n6: (14, 145)
a6: (78, 209)
b6: (24, 155)
c6: (88, 219)
d6: (8, 139)
e6: (72, 203)
f6: (126, 257)
g6: (125, 256)
h6: (61, 192)
m6: (123, 254)
n7: (59, 190)
a7: (23, 154)
b7: (87, 218)
c7: (19, 150)
d7: (83, 214)
e7: (122, 253)
f7: (58, 189)
g7: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131)(132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262)
h7: (121, 252)
m7: (57, 188)
n8: (7, 138)
a8: (71, 202)
b8: (13, 144)
c8: (77, 208)
d8: (104, 235)
e8: (40, 171)
f8: (62, 193)
g8: (103, 234)
h8: (39, 170)
m8: (113, 244)
n9: (41, 172)
a9: (105, 236)
b9: (49, 180)
c9: (20, 151)
d9: (84, 215)
e9: (64, 195)
f9: (32, 163)
g9: (96, 227)
h9: (116, 247)
m9: (52, 183)
n10: (108, 239)
a10: (44, 175)
b10: (124, 255)
c10: (60, 191)
d10: (15, 146)
e10: (79, 210)
f10: (26, 157)
g10: (90, 221)
h10: (11, 142)
m10: (75, 206)
n11: (102, 233)
a11: (38, 169)
b11: (129, 260)
c11: (17, 148)
d11: (81, 212)
e11: (28, 159)
f11: (92, 223)
g11: (109, 240)
h11: (45, 176)
m11: (130, 261)
n12: (22, 153)
a12: (86, 217)
b12: (9, 140)
c12: (73, 204)
d12: (3, 134)
e12: (67, 198)
f12: (18, 149)
g12: (82, 213)
h12: (16, 147)
m12: (80, 211)
n13: (4, 135)
a13: (68, 199)
C4[ 262, 1 ]
262
-1 133 2 262 131
-2 132 1 134 3
-3 133 2 135 4
-4 134 3 136 5
-5 135 4 137 6
-6 136 5 138 7
-7 137 6 139 8
-8 138 7 140 9
-9 139 8 141 10
-10 11 140 9 142
-11 143 12 141 10
-12 11 144 13 142
-13 143 12 145 14
-14 144 13 146 15
-15 145 14 147 16
-16 146 15 148 17
-17 147 16 149 18
-18 148 17 150 19
-19 149 18 151 20
-20 150 19 152 21
-21 22 151 20 153
-22 154 23 152 21
-23 22 155 24 153
-24 154 23 156 25
-25 155 24 157 26
-26 156 25 158 27
-27 157 26 159 28
-28 158 27 160 29
-29 159 28 161 30
-30 160 29 162 31
-31 161 30 163 32
-32 33 162 31 164
-33 165 34 163 32
-34 33 166 35 164
-35 165 34 167 36
-36 166 35 168 37
-37 167 36 169 38
-38 168 37 170 39
-39 169 38 171 40
-40 170 39 172 41
-41 171 40 173 42
-42 172 41 174 43
-43 44 173 42 175
-44 176 45 174 43
-45 44 177 46 175
-46 176 45 178 47
-47 177 46 179 48
-48 178 47 180 49
-49 179 48 181 50
-50 180 49 182 51
-51 181 50 183 52
-52 182 51 184 53
-53 183 52 185 54
-54 55 184 53 186
-55 187 56 185 54
-56 55 188 57 186
-57 187 56 189 58
-58 188 57 190 59
-59 189 58 191 60
-60 190 59 192 61
-61 191 60 193 62
-62 192 61 194 63
-63 193 62 195 64
-64 194 63 196 65
-65 66 195 64 197
-66 198 67 196 65
-67 66 199 68 197
-68 198 67 200 69
-69 199 68 201 70
-70 200 69 202 71
-71 201 70 203 72
-72 202 71 204 73
-73 203 72 205 74
-74 204 73 206 75
-75 205 74 207 76
-76 77 206 75 208
-77 209 78 207 76
-78 77 210 79 208
-79 209 78 211 80
-80 210 79 212 81
-81 211 80 213 82
-82 212 81 214 83
-83 213 82 215 84
-84 214 83 216 85
-85 215 84 217 86
-86 216 85 218 87
-87 88 217 86 219
-88 220 89 218 87
-89 88 221 90 219
-90 220 89 222 91
-91 221 90 223 92
-92 222 91 224 93
-93 223 92 225 94
-94 224 93 226 95
-95 225 94 227 96
-96 226 95 228 97
-97 227 96 229 98
-98 99 228 97 230
-99 231 100 229 98
-100 99 232 101 230
-101 231 100 233 102
-102 232 101 234 103
-103 233 102 235 104
-104 234 103 236 105
-105 235 104 237 106
-106 236 105 238 107
-107 237 106 239 108
-108 238 107 240 109
-109 110 239 108 241
-110 242 111 240 109
-111 110 243 112 241
-112 242 111 244 113
-113 243 112 245 114
-114 244 113 246 115
-115 245 114 247 116
-116 246 115 248 117
-117 247 116 249 118
-118 248 117 250 119
-119 249 118 251 120
-120 121 250 119 252
-121 253 122 251 120
-122 121 254 123 252
-123 253 122 255 124
-124 254 123 256 125
-125 255 124 257 126
-126 256 125 258 127
-127 257 126 259 128
-128 258 127 260 129
-129 259 128 261 130
-130 260 129 262 131
-131 132 1 261 130
-132 133 2 262 131
-133 132 1 134 3
-134 133 2 135 4
-135 134 3 136 5
-136 135 4 137 6
-137 136 5 138 7
-138 137 6 139 8
-139 138 7 140 9
-140 139 8 141 10
-141 11 140 9 142
-142 143 12 141 10
-143 11 144 13 142
-144 143 12 145 14
-145 144 13 146 15
-146 145 14 147 16
-147 146 15 148 17
-148 147 16 149 18
-149 148 17 150 19
-150 149 18 151 20
-151 150 19 152 21
-152 22 151 20 153
-153 154 23 152 21
-154 22 155 24 153
-155 154 23 156 25
-156 155 24 157 26
-157 156 25 158 27
-158 157 26 159 28
-159 158 27 160 29
-160 159 28 161 30
-161 160 29 162 31
-162 161 30 163 32
-163 33 162 31 164
-164 165 34 163 32
-165 33 166 35 164
-166 165 34 167 36
-167 166 35 168 37
-168 167 36 169 38
-169 168 37 170 39
-170 169 38 171 40
-171 170 39 172 41
-172 171 40 173 42
-173 172 41 174 43
-174 44 173 42 175
-175 176 45 174 43
-176 44 177 46 175
-177 176 45 178 47
-178 177 46 179 48
-179 178 47 180 49
-180 179 48 181 50
-181 180 49 182 51
-182 181 50 183 52
-183 182 51 184 53
-184 183 52 185 54
-185 55 184 53 186
-186 187 56 185 54
-187 55 188 57 186
-188 187 56 189 58
-189 188 57 190 59
-190 189 58 191 60
-191 190 59 192 61
-192 191 60 193 62
-193 192 61 194 63
-194 193 62 195 64
-195 194 63 196 65
-196 66 195 64 197
-197 198 67 196 65
-198 66 199 68 197
-199 198 67 200 69
-200 199 68 201 70
-201 200 69 202 71
-202 201 70 203 72
-203 202 71 204 73
-204 203 72 205 74
-205 204 73 206 75
-206 205 74 207 76
-207 77 206 75 208
-208 209 78 207 76
-209 77 210 79 208
-210 209 78 211 80
-211 210 79 212 81
-212 211 80 213 82
-213 212 81 214 83
-214 213 82 215 84
-215 214 83 216 85
-216 215 84 217 86
-217 216 85 218 87
-218 88 217 86 219
-219 220 89 218 87
-220 88 221 90 219
-221 220 89 222 91
-222 221 90 223 92
-223 222 91 224 93
-224 223 92 225 94
-225 224 93 226 95
-226 225 94 227 96
-227 226 95 228 97
-228 227 96 229 98
-229 99 228 97 230
-230 231 100 229 98
-231 99 232 101 230
-232 231 100 233 102
-233 232 101 234 103
-234 233 102 235 104
-235 234 103 236 105
-236 235 104 237 106
-237 236 105 238 107
-238 237 106 239 108
-239 238 107 240 109
-240 110 239 108 241
-241 242 111 240 109
-242 110 243 112 241
-243 242 111 244 113
-244 243 112 245 114
-245 244 113 246 115
-246 245 114 247 116
-247 246 115 248 117
-248 247 116 249 118
-249 248 117 250 119
-250 249 118 251 120
-251 121 250 119 252
-252 253 122 251 120
-253 121 254 123 252
-254 253 122 255 124
-255 254 123 256 125
-256 255 124 257 126
-257 256 125 258 127
-258 257 126 259 128
-259 258 127 260 129
-260 259 128 261 130
-261 260 129 262 131
-262 132 1 261 130
0