[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 264, 1 ] =
W(132,2).
(I) Following is a form readable by MAGMA:
g:=Graph<264|{ {2, 3}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254,
255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243},
{240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228,
229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217},
{214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202,
203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191},
{188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176,
177}, {174, 175}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75},
{72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59},
{56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14,
15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30,
31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46,
47}, {48, 49}, {50, 51}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96,
97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110,
111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123},
{124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136,
137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149},
{150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162,
163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {1, 2}, {261,
262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238},
{233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209,
210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186},
{181, 182}, {177, 178}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61,
62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25,
26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {85, 86}, {89,
90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117,
118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142},
{145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169,
170}, {173, 174}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227,
228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180},
{83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28},
{35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124},
{131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {7, 8},
{263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {71,
72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136},
{151, 152}, {167, 168}, {15, 16}, {239, 240}, {207, 208}, {175, 176}, {79, 80},
{47, 48}, {111, 112}, {143, 144}, {31, 32}, {223, 224}, {95, 96}, {159, 160},
{63, 64}, {191, 192}, {4, 135}, {84, 215}, {80, 211}, {76, 207}, {72, 203}, {68,
199}, {64, 195}, {60, 191}, {56, 187}, {52, 183}, {8, 139}, {12, 143}, {16,
147}, {20, 151}, {24, 155}, {28, 159}, {32, 163}, {36, 167}, {40, 171}, {44,
175}, {48, 179}, {88, 219}, {92, 223}, {96, 227}, {100, 231}, {104, 235}, {108,
239}, {112, 243}, {116, 247}, {120, 251}, {124, 255}, {1, 132}, {83, 214}, {82,
215}, {81, 212}, {80, 213}, {75, 206}, {74, 207}, {73, 204}, {72, 205}, {67,
198}, {66, 199}, {65, 196}, {64, 197}, {59, 190}, {58, 191}, {57, 188}, {56,
189}, {51, 182}, {50, 183}, {2, 135}, {3, 134}, {8, 141}, {9, 140}, {10, 143},
{11, 142}, {16, 149}, {17, 148}, {18, 151}, {19, 150}, {24, 157}, {25, 156},
{26, 159}, {27, 158}, {32, 165}, {33, 164}, {34, 167}, {35, 166}, {40, 173},
{41, 172}, {42, 175}, {43, 174}, {48, 181}, {49, 180}, {88, 221}, {89, 220},
{90, 223}, {91, 222}, {96, 229}, {97, 228}, {98, 231}, {99, 230}, {104, 237},
{105, 236}, {106, 239}, {107, 238}, {112, 245}, {113, 244}, {114, 247}, {115,
246}, {120, 253}, {121, 252}, {122, 255}, {123, 254}, {1, 134}, {82, 213}, {81,
214}, {74, 205}, {73, 206}, {66, 197}, {65, 198}, {58, 189}, {57, 190}, {50,
181}, {2, 133}, {9, 142}, {10, 141}, {17, 150}, {18, 149}, {25, 158}, {26, 157},
{33, 166}, {34, 165}, {41, 174}, {42, 173}, {49, 182}, {89, 222}, {90, 221},
{97, 230}, {98, 229}, {105, 238}, {106, 237}, {113, 246}, {114, 245}, {121,
254}, {122, 253}, {3, 136}, {83, 216}, {71, 204}, {67, 200}, {55, 188}, {51,
184}, {7, 140}, {19, 152}, {23, 156}, {35, 168}, {39, 172}, {87, 220}, {99,
232}, {103, 236}, {115, 248}, {119, 252}, {4, 137}, {84, 217}, {71, 202}, {70,
203}, {69, 200}, {68, 201}, {55, 186}, {54, 187}, {53, 184}, {52, 185}, {5,
136}, {6, 139}, {7, 138}, {20, 153}, {21, 152}, {22, 155}, {23, 154}, {36, 169},
{37, 168}, {38, 171}, {39, 170}, {85, 216}, {86, 219}, {87, 218}, {100, 233},
{101, 232}, {102, 235}, {103, 234}, {116, 249}, {117, 248}, {118, 251}, {119,
250}, {5, 138}, {70, 201}, {69, 202}, {54, 185}, {53, 186}, {6, 137}, {21, 154},
{22, 153}, {37, 170}, {38, 169}, {85, 218}, {86, 217}, {101, 234}, {102, 233},
{117, 250}, {118, 249}, {11, 144}, {79, 212}, {75, 208}, {15, 148}, {43, 176},
{47, 180}, {107, 240}, {111, 244}, {12, 145}, {79, 210}, {78, 211}, {77, 208},
{76, 209}, {13, 144}, {14, 147}, {15, 146}, {44, 177}, {45, 176}, {46, 179},
{47, 178}, {108, 241}, {109, 240}, {110, 243}, {111, 242}, {13, 146}, {78, 209},
{77, 210}, {14, 145}, {45, 178}, {46, 177}, {109, 242}, {110, 241}, {27, 160},
{31, 164}, {91, 224}, {95, 228}, {28, 161}, {29, 160}, {30, 163}, {31, 162},
{92, 225}, {93, 224}, {94, 227}, {95, 226}, {29, 162}, {30, 161}, {93, 226},
{94, 225}, {59, 192}, {63, 196}, {60, 193}, {63, 194}, {62, 195}, {61, 192},
{61, 194}, {62, 193}, {127, 128}, {1, 264}, {123, 256}, {127, 260}, {124, 257},
{125, 256}, {126, 259}, {127, 258}, {125, 258}, {126, 257}, {128, 259}, {132,
263}, {128, 261}, {129, 260}, {130, 263}, {131, 262}, {129, 262}, {130, 261},
{131, 264}, {133, 264}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (9, 141) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (42, 174)
c: (106, 238)
d: (73, 205)
e: (5, 137)
f: (38, 170)
g: (102, 234)
h: (69, 201)
m: (118, 250)
n1: (21, 153)
a1: (85, 217)
b1: (54, 186)
c1: (31, 163)
d1: (95, 227)
e1: (10, 142)
f1: (41, 173)
g1: (105, 237)
h1: (74, 206)
m1: (61, 193)
n2: (117, 249)
a2: (22, 154)
b2: (86, 218)
c2: (53, 185)
d2: (131, 263)
e2: (14, 146)
f2: (45, 177)
g2: (109, 241)
h2: (78, 210)
m2: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132)(133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,
244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260, 261, 262, 263, 264)
n3: (111, 243)
a3: (47, 179)
b3: (16, 148)
c3: (80, 212)
d3: (128, 260)
e3: (116, 248)
f3: (19, 151)
g3: (83, 215)
h3: (52, 184)
m3: (32, 164)
n4: (96, 228)
a4: (125, 257)
b4: (124, 256)
c4: (91, 223)
d4: (27, 159)
e4: (60, 192)
f4: (122, 254)
g4: (89, 221)
h4: (25, 157)
m4: (58, 190)
n5: (6, 138)
a5: (37, 169)
b5: (101, 233)
c5: (70, 202)
d5: (12, 144)
e5: (43, 175)
f5: (107, 239)
g5: (76, 208)
h5: (119, 251)
m5: (88, 220)
n6: (24, 156)
a6: (55, 187)
b6: (62, 194)
c6: (4, 136)
d6: (35, 167)
e6: (99, 231)
f6: (68, 200)
g6: (13, 145)
h6: (46, 178)
m6: (110, 242)
n7: (77, 209)
a7: (34, 166)
b7: (98, 230)
c7: (2, 132)(3, 131)(4, 130)(5, 129)(6, 128)(7, 127)(8, 126)(9, 125)(10,
124)(11, 123)(12, 122)(13, 121)(14, 120)(15, 119)(16, 118)(17, 117)(18, 116)(19,
115)(20, 114)(21, 113)(22, 112)(23, 111)(24, 110)(25, 109)(26, 108)(27, 107)(28,
106)(29, 105)(30, 104)(31, 103)(32, 102)(33, 101)(34, 100)(35, 99)(36, 98)(37,
97)(38, 96)(39, 95)(40, 94)(41, 93)(42, 92)(43, 91)(44, 90)(45, 89)(46, 88)(47,
87)(48, 86)(49, 85)(50, 84)(51, 83)(52, 82)(53, 81)(54, 80)(55, 79)(56, 78)(57,
77)(58, 76)(59, 75)(60, 74)(61, 73)(62, 72)(63, 71)(64, 70)(65, 69)(66, 68)(134,
264)(135, 263)(136, 262)(137, 261)(138, 260)(139, 259)(140, 258)(141, 257)(142,
256)(143, 255)(144, 254)(145, 253)(146, 252)(147, 251)(148, 250)(149, 249)(150,
248)(151, 247)(152, 246)(153, 245)(154, 244)(155, 243)(156, 242)(157, 241)(158,
240)(159, 239)(160, 238)(161, 237)(162, 236)(163, 235)(164, 234)(165, 233)(166,
232)(167, 231)(168, 230)(169, 229)(170, 228)(171, 227)(172, 226)(173, 225)(174,
224)(175, 223)(176, 222)(177, 221)(178, 220)(179, 219)(180, 218)(181, 217)(182,
216)(183, 215)(184, 214)(185, 213)(186, 212)(187, 211)(188, 210)(189, 209)(190,
208)(191, 207)(192, 206)(193, 205)(194, 204)(195, 203)(196, 202)(197, 201)(198,
200)
d7: (28, 160)
e7: (92, 224)
f7: (123, 255)
g7: (59, 191)
h7: (30, 162)
m7: (94, 226)
n8: (129, 261)
a8: (44, 176)
b8: (108, 240)
c8: (11, 143)
d8: (75, 207)
e8: (17, 149)
f8: (114, 246)
g8: (50, 182)
h8: (81, 213)
m8: (8, 140)
n9: (39, 171)
a9: (103, 235)
b9: (72, 204)
c9: (121, 253)
d9: (90, 222)
e9: (26, 158)
f9: (57, 189)
g9: (29, 161)
h9: (93, 225)
m9: (63, 195)
n10: (115, 247)
a10: (20, 152)
b10: (84, 216)
c10: (51, 183)
d10: (120, 252)
e10: (87, 219)
f10: (23, 155)
g10: (56, 188)
h10: (127, 259)
m10: (64, 196)
n11: (130, 262)
a11: (33, 165)
b11: (97, 229)
c11: (66, 198)
d11: (2, 134)
e11: (3, 135)
f11: (36, 168)
g11: (100, 232)
h11: (67, 199)
m11: (126, 258)
n12: (132, 264)
a12: (7, 139)
b12: (40, 172)
c12: (104, 236)
d12: (71, 203)
e12: (18, 150)
f12: (113, 245)
g12: (49, 181)
h12: (82, 214)
m12: (15, 147)
n13: (112, 244)
a13: (48, 180)
b13: (79, 211)
C4[ 264, 1 ]
264
-1 132 264 2 134
-2 1 133 3 135
-3 2 134 4 136
-4 3 135 5 137
-5 4 136 6 138
-6 5 137 7 139
-7 6 138 8 140
-8 7 139 9 141
-9 8 140 10 142
-10 11 143 9 141
-11 12 144 10 142
-12 11 143 13 145
-13 12 144 14 146
-14 13 145 15 147
-15 14 146 16 148
-16 15 147 17 149
-17 16 148 18 150
-18 17 149 19 151
-19 18 150 20 152
-20 19 151 21 153
-21 22 154 20 152
-22 23 155 21 153
-23 22 154 24 156
-24 23 155 25 157
-25 24 156 26 158
-26 25 157 27 159
-27 26 158 28 160
-28 27 159 29 161
-29 28 160 30 162
-30 29 161 31 163
-31 30 162 32 164
-32 33 165 31 163
-33 34 166 32 164
-34 33 165 35 167
-35 34 166 36 168
-36 35 167 37 169
-37 36 168 38 170
-38 37 169 39 171
-39 38 170 40 172
-40 39 171 41 173
-41 40 172 42 174
-42 41 173 43 175
-43 44 176 42 174
-44 45 177 43 175
-45 44 176 46 178
-46 45 177 47 179
-47 46 178 48 180
-48 47 179 49 181
-49 48 180 50 182
-50 49 181 51 183
-51 50 182 52 184
-52 51 183 53 185
-53 52 184 54 186
-54 55 187 53 185
-55 56 188 54 186
-56 55 187 57 189
-57 56 188 58 190
-58 57 189 59 191
-59 58 190 60 192
-60 59 191 61 193
-61 60 192 62 194
-62 61 193 63 195
-63 62 194 64 196
-64 63 195 65 197
-65 66 198 64 196
-66 67 199 65 197
-67 66 198 68 200
-68 67 199 69 201
-69 68 200 70 202
-70 69 201 71 203
-71 70 202 72 204
-72 71 203 73 205
-73 72 204 74 206
-74 73 205 75 207
-75 74 206 76 208
-76 77 209 75 207
-77 78 210 76 208
-78 77 209 79 211
-79 78 210 80 212
-80 79 211 81 213
-81 80 212 82 214
-82 81 213 83 215
-83 82 214 84 216
-84 83 215 85 217
-85 84 216 86 218
-86 85 217 87 219
-87 88 220 86 218
-88 89 221 87 219
-89 88 220 90 222
-90 89 221 91 223
-91 90 222 92 224
-92 91 223 93 225
-93 92 224 94 226
-94 93 225 95 227
-95 94 226 96 228
-96 95 227 97 229
-97 96 228 98 230
-98 99 231 97 229
-99 100 232 98 230
-100 99 231 101 233
-101 100 232 102 234
-102 101 233 103 235
-103 102 234 104 236
-104 103 235 105 237
-105 104 236 106 238
-106 105 237 107 239
-107 106 238 108 240
-108 107 239 109 241
-109 110 242 108 240
-110 111 243 109 241
-111 110 242 112 244
-112 111 243 113 245
-113 112 244 114 246
-114 113 245 115 247
-115 114 246 116 248
-116 115 247 117 249
-117 116 248 118 250
-118 117 249 119 251
-119 118 250 120 252
-120 121 253 119 251
-121 122 254 120 252
-122 121 253 123 255
-123 122 254 124 256
-124 123 255 125 257
-125 124 256 126 258
-126 125 257 127 259
-127 126 258 128 260
-128 127 259 129 261
-129 128 260 130 262
-130 129 261 131 263
-131 132 264 130 262
-132 1 133 131 263
-133 132 264 2 134
-134 1 133 3 135
-135 2 134 4 136
-136 3 135 5 137
-137 4 136 6 138
-138 5 137 7 139
-139 6 138 8 140
-140 7 139 9 141
-141 8 140 10 142
-142 11 143 9 141
-143 12 144 10 142
-144 11 143 13 145
-145 12 144 14 146
-146 13 145 15 147
-147 14 146 16 148
-148 15 147 17 149
-149 16 148 18 150
-150 17 149 19 151
-151 18 150 20 152
-152 19 151 21 153
-153 22 154 20 152
-154 23 155 21 153
-155 22 154 24 156
-156 23 155 25 157
-157 24 156 26 158
-158 25 157 27 159
-159 26 158 28 160
-160 27 159 29 161
-161 28 160 30 162
-162 29 161 31 163
-163 30 162 32 164
-164 33 165 31 163
-165 34 166 32 164
-166 33 165 35 167
-167 34 166 36 168
-168 35 167 37 169
-169 36 168 38 170
-170 37 169 39 171
-171 38 170 40 172
-172 39 171 41 173
-173 40 172 42 174
-174 41 173 43 175
-175 44 176 42 174
-176 45 177 43 175
-177 44 176 46 178
-178 45 177 47 179
-179 46 178 48 180
-180 47 179 49 181
-181 48 180 50 182
-182 49 181 51 183
-183 50 182 52 184
-184 51 183 53 185
-185 52 184 54 186
-186 55 187 53 185
-187 56 188 54 186
-188 55 187 57 189
-189 56 188 58 190
-190 57 189 59 191
-191 58 190 60 192
-192 59 191 61 193
-193 60 192 62 194
-194 61 193 63 195
-195 62 194 64 196
-196 63 195 65 197
-197 66 198 64 196
-198 67 199 65 197
-199 66 198 68 200
-200 67 199 69 201
-201 68 200 70 202
-202 69 201 71 203
-203 70 202 72 204
-204 71 203 73 205
-205 72 204 74 206
-206 73 205 75 207
-207 74 206 76 208
-208 77 209 75 207
-209 78 210 76 208
-210 77 209 79 211
-211 78 210 80 212
-212 79 211 81 213
-213 80 212 82 214
-214 81 213 83 215
-215 82 214 84 216
-216 83 215 85 217
-217 84 216 86 218
-218 85 217 87 219
-219 88 220 86 218
-220 89 221 87 219
-221 88 220 90 222
-222 89 221 91 223
-223 90 222 92 224
-224 91 223 93 225
-225 92 224 94 226
-226 93 225 95 227
-227 94 226 96 228
-228 95 227 97 229
-229 96 228 98 230
-230 99 231 97 229
-231 100 232 98 230
-232 99 231 101 233
-233 100 232 102 234
-234 101 233 103 235
-235 102 234 104 236
-236 103 235 105 237
-237 104 236 106 238
-238 105 237 107 239
-239 106 238 108 240
-240 107 239 109 241
-241 110 242 108 240
-242 111 243 109 241
-243 110 242 112 244
-244 111 243 113 245
-245 112 244 114 246
-246 113 245 115 247
-247 114 246 116 248
-248 115 247 117 249
-249 116 248 118 250
-250 117 249 119 251
-251 118 250 120 252
-252 121 253 119 251
-253 122 254 120 252
-254 121 253 123 255
-255 122 254 124 256
-256 123 255 125 257
-257 124 256 126 258
-258 125 257 127 259
-259 126 258 128 260
-260 127 259 129 261
-261 128 260 130 262
-262 129 261 131 263
-263 132 264 130 262
-264 1 133 131 263
0