[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 264, 2 ] =
C_264(1,23).
(I) Following is a form readable by MAGMA:
g:=Graph<264|{ {2, 3}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254,
255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243},
{240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228,
229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217},
{214, 215}, {212, 213}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114,
115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103},
{100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86,
87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70,
71}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35},
{36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51},
{52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67},
{68, 69}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134,
135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147},
{148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160,
161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173},
{174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186,
187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199},
{200, 201}, {202, 203}, {204, 205}, {206, 207}, {208, 209}, {210, 211}, {1, 2},
{261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237,
238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214},
{121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97,
98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {5, 6}, {9,
10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41,
42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {125,
126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150},
{153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177,
178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201, 202},
{205, 206}, {209, 210}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236},
{227, 228}, {219, 220}, {211, 212}, {115, 116}, {107, 108}, {99, 100}, {91, 92},
{83, 84}, {75, 76}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52},
{59, 60}, {67, 68}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156},
{163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {203, 204}, {7, 8},
{263, 264}, {247, 248}, {231, 232}, {215, 216}, {119, 120}, {103, 104}, {87,
88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {135, 136}, {151, 152}, {167, 168},
{183, 184}, {199, 200}, {8, 31}, {232, 255}, {224, 247}, {104, 127}, {96, 119},
{72, 95}, {32, 55}, {40, 63}, {64, 87}, {128, 151}, {136, 159}, {160, 183},
{168, 191}, {192, 215}, {200, 223}, {1, 24}, {231, 254}, {229, 252}, {227, 250},
{225, 248}, {103, 126}, {101, 124}, {99, 122}, {97, 120}, {71, 94}, {3, 26}, {5,
28}, {7, 30}, {33, 56}, {35, 58}, {37, 60}, {39, 62}, {65, 88}, {67, 90}, {69,
92}, {129, 152}, {131, 154}, {133, 156}, {135, 158}, {161, 184}, {163, 186},
{165, 188}, {167, 190}, {193, 216}, {195, 218}, {197, 220}, {199, 222}, {2, 25},
{230, 253}, {226, 249}, {102, 125}, {98, 121}, {70, 93}, {6, 29}, {34, 57}, {38,
61}, {66, 89}, {130, 153}, {134, 157}, {162, 185}, {166, 189}, {194, 217}, {198,
221}, {4, 27}, {239, 240}, {228, 251}, {111, 112}, {100, 123}, {79, 80}, {15,
16}, {36, 59}, {47, 48}, {68, 91}, {132, 155}, {143, 144}, {164, 187}, {175,
176}, {196, 219}, {207, 208}, {9, 32}, {223, 246}, {221, 244}, {219, 242}, {217,
240}, {95, 118}, {93, 116}, {91, 114}, {89, 112}, {79, 102}, {77, 100}, {75,
98}, {73, 96}, {11, 34}, {13, 36}, {15, 38}, {25, 48}, {27, 50}, {29, 52}, {31,
54}, {137, 160}, {139, 162}, {141, 164}, {143, 166}, {153, 176}, {155, 178},
{157, 180}, {159, 182}, {201, 224}, {203, 226}, {205, 228}, {207, 230}, {10,
33}, {222, 245}, {218, 241}, {94, 117}, {90, 113}, {78, 101}, {74, 97}, {14,
37}, {26, 49}, {30, 53}, {138, 161}, {142, 165}, {154, 177}, {158, 181}, {202,
225}, {206, 229}, {12, 35}, {220, 243}, {92, 115}, {76, 99}, {28, 51}, {140,
163}, {156, 179}, {204, 227}, {16, 39}, {216, 239}, {88, 111}, {80, 103}, {24,
47}, {144, 167}, {152, 175}, {208, 231}, {17, 40}, {215, 238}, {213, 236}, {211,
234}, {87, 110}, {85, 108}, {83, 106}, {81, 104}, {19, 42}, {21, 44}, {23, 46},
{145, 168}, {147, 170}, {149, 172}, {151, 174}, {209, 232}, {18, 41}, {214,
237}, {86, 109}, {82, 105}, {22, 45}, {146, 169}, {150, 173}, {210, 233}, {20,
43}, {223, 224}, {212, 235}, {95, 96}, {84, 107}, {31, 32}, {148, 171}, {159,
160}, {41, 64}, {43, 66}, {45, 68}, {47, 70}, {57, 80}, {59, 82}, {61, 84}, {63,
86}, {169, 192}, {171, 194}, {173, 196}, {175, 198}, {185, 208}, {187, 210},
{189, 212}, {191, 214}, {42, 65}, {46, 69}, {58, 81}, {62, 85}, {170, 193},
{174, 197}, {186, 209}, {190, 213}, {44, 67}, {60, 83}, {172, 195}, {188, 211},
{48, 71}, {56, 79}, {176, 199}, {184, 207}, {49, 72}, {51, 74}, {53, 76}, {55,
78}, {177, 200}, {179, 202}, {181, 204}, {183, 206}, {50, 73}, {54, 77}, {178,
201}, {182, 205}, {52, 75}, {63, 64}, {180, 203}, {191, 192}, {105, 128}, {121,
144}, {111, 134}, {109, 132}, {107, 130}, {123, 146}, {125, 148}, {127, 150},
{106, 129}, {110, 133}, {122, 145}, {126, 149}, {108, 131}, {124, 147}, {2,
243}, {4, 245}, {6, 247}, {8, 249}, {10, 251}, {12, 253}, {14, 255}, {1, 242},
{5, 246}, {9, 250}, {13, 254}, {3, 244}, {120, 143}, {112, 135}, {11, 252},
{113, 136}, {119, 142}, {117, 140}, {115, 138}, {114, 137}, {118, 141}, {7,
248}, {116, 139}, {127, 128}, {1, 264}, {15, 256}, {16, 257}, {18, 259}, {20,
261}, {22, 263}, {17, 258}, {21, 262}, {19, 260}, {23, 264}, {233, 256}, {239,
262}, {237, 260}, {235, 258}, {234, 257}, {238, 261}, {236, 259}, {240, 263},
{241, 264}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 242)(3, 219)(4, 196)(5, 173)(6, 150)(7, 127)(8, 104)(9, 81)(10, 58)(11,
35)(13, 253)(14, 230)(15, 207)(16, 184)(17, 161)(18, 138)(19, 115)(20, 92)(21,
69)(22, 46)(24, 264)(25, 241)(26, 218)(27, 195)(28, 172)(29, 149)(30, 126)(31,
103)(32, 80)(33, 57)(36, 252)(37, 229)(38, 206)(39, 183)(40, 160)(41, 137)(42,
114)(43, 91)(44, 68)(47, 263)(48, 240)(49, 217)(50, 194)(51, 171)(52, 148)(53,
125)(54, 102)(55, 79)(59, 251)(60, 228)(61, 205)(62, 182)(63, 159)(64, 136)(65,
113)(66, 90)(70, 262)(71, 239)(72, 216)(73, 193)(74, 170)(75, 147)(76, 124)(77,
101)(82, 250)(83, 227)(84, 204)(85, 181)(86, 158)(87, 135)(88, 112)(93, 261)(94,
238)(95, 215)(96, 192)(97, 169)(98, 146)(99, 123)(105, 249)(106, 226)(107,
203)(108, 180)(109, 157)(110, 134)(116, 260)(117, 237)(118, 214)(119, 191)(120,
168)(121, 145)(128, 248)(129, 225)(130, 202)(131, 179)(132, 156)(139, 259)(140,
236)(141, 213)(142, 190)(143, 167)(151, 247)(152, 224)(153, 201)(154, 178)(162,
258)(163, 235)(164, 212)(165, 189)(174, 246)(175, 223)(176, 200)(185, 257)(186,
234)(187, 211)(197, 245)(198, 222)(208, 256)(209, 233)(220, 244)(231, 255) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264)
c: (2, 24)(3, 47)(4, 70)(5, 93)(6, 116)(7, 139)(8, 162)(9, 185)(10, 208)(11,
231)(12, 254)(14, 36)(15, 59)(16, 82)(17, 105)(18, 128)(19, 151)(20, 174)(21,
197)(22, 220)(23, 243)(26, 48)(27, 71)(28, 94)(29, 117)(30, 140)(31, 163)(32,
186)(33, 209)(34, 232)(35, 255)(38, 60)(39, 83)(40, 106)(41, 129)(42, 152)(43,
175)(44, 198)(45, 221)(46, 244)(50, 72)(51, 95)(52, 118)(53, 141)(54, 164)(55,
187)(56, 210)(57, 233)(58, 256)(62, 84)(63, 107)(64, 130)(65, 153)(66, 176)(67,
199)(68, 222)(69, 245)(74, 96)(75, 119)(76, 142)(77, 165)(78, 188)(79, 211)(80,
234)(81, 257)(86, 108)(87, 131)(88, 154)(89, 177)(90, 200)(91, 223)(92, 246)(98,
120)(99, 143)(100, 166)(101, 189)(102, 212)(103, 235)(104, 258)(110, 132)(111,
155)(112, 178)(113, 201)(114, 224)(115, 247)(122, 144)(123, 167)(124, 190)(125,
213)(126, 236)(127, 259)(134, 156)(135, 179)(136, 202)(137, 225)(138, 248)(146,
168)(147, 191)(148, 214)(149, 237)(150, 260)(158, 180)(159, 203)(160, 226)(161,
249)(170, 192)(171, 215)(172, 238)(173, 261)(182, 204)(183, 227)(184, 250)(194,
216)(195, 239)(196, 262)(206, 228)(207, 251)(218, 240)(219, 263)(230, 252)(242,
264)
C4[ 264, 2 ]
264
-1 242 264 2 24
-2 1 243 3 25
-3 2 244 4 26
-4 3 245 5 27
-5 4 246 6 28
-6 5 247 7 29
-7 6 248 8 30
-8 7 249 9 31
-9 8 250 10 32
-10 11 33 9 251
-11 12 34 10 252
-12 11 253 13 35
-13 12 254 14 36
-14 13 255 15 37
-15 14 256 16 38
-16 15 257 17 39
-17 16 258 18 40
-18 17 259 19 41
-19 18 260 20 42
-20 19 261 21 43
-21 22 44 20 262
-22 23 45 21 263
-23 22 264 24 46
-24 1 23 25 47
-25 2 24 26 48
-26 3 25 27 49
-27 4 26 28 50
-28 5 27 29 51
-29 6 28 30 52
-30 7 29 31 53
-31 8 30 32 54
-32 33 55 9 31
-33 34 56 10 32
-34 11 33 35 57
-35 12 34 36 58
-36 13 35 37 59
-37 14 36 38 60
-38 15 37 39 61
-39 16 38 40 62
-40 17 39 41 63
-41 18 40 42 64
-42 19 41 43 65
-43 44 66 20 42
-44 45 67 21 43
-45 22 44 46 68
-46 23 45 47 69
-47 24 46 48 70
-48 25 47 49 71
-49 26 48 50 72
-50 27 49 51 73
-51 28 50 52 74
-52 29 51 53 75
-53 30 52 54 76
-54 55 77 31 53
-55 56 78 32 54
-56 33 55 57 79
-57 34 56 58 80
-58 35 57 59 81
-59 36 58 60 82
-60 37 59 61 83
-61 38 60 62 84
-62 39 61 63 85
-63 40 62 64 86
-64 41 63 65 87
-65 66 88 42 64
-66 67 89 43 65
-67 44 66 68 90
-68 45 67 69 91
-69 46 68 70 92
-70 47 69 71 93
-71 48 70 72 94
-72 49 71 73 95
-73 50 72 74 96
-74 51 73 75 97
-75 52 74 76 98
-76 77 99 53 75
-77 78 100 54 76
-78 55 77 79 101
-79 56 78 80 102
-80 57 79 81 103
-81 58 80 82 104
-82 59 81 83 105
-83 60 82 84 106
-84 61 83 85 107
-85 62 84 86 108
-86 63 85 87 109
-87 88 110 64 86
-88 89 111 65 87
-89 66 88 90 112
-90 67 89 91 113
-91 68 90 92 114
-92 69 91 93 115
-93 70 92 94 116
-94 71 93 95 117
-95 72 94 96 118
-96 73 95 97 119
-97 74 96 98 120
-98 99 121 75 97
-99 100 122 76 98
-100 77 99 101 123
-101 78 100 102 124
-102 79 101 103 125
-103 80 102 104 126
-104 81 103 105 127
-105 82 104 106 128
-106 83 105 107 129
-107 84 106 108 130
-108 85 107 109 131
-109 110 132 86 108
-110 111 133 87 109
-111 88 110 112 134
-112 89 111 113 135
-113 90 112 114 136
-114 91 113 115 137
-115 92 114 116 138
-116 93 115 117 139
-117 94 116 118 140
-118 95 117 119 141
-119 96 118 120 142
-120 121 143 97 119
-121 122 144 98 120
-122 99 121 123 145
-123 100 122 124 146
-124 101 123 125 147
-125 102 124 126 148
-126 103 125 127 149
-127 104 126 128 150
-128 105 127 129 151
-129 106 128 130 152
-130 107 129 131 153
-131 132 154 108 130
-132 133 155 109 131
-133 110 132 134 156
-134 111 133 135 157
-135 112 134 136 158
-136 113 135 137 159
-137 114 136 138 160
-138 115 137 139 161
-139 116 138 140 162
-140 117 139 141 163
-141 118 140 142 164
-142 143 165 119 141
-143 144 166 120 142
-144 121 143 145 167
-145 122 144 146 168
-146 123 145 147 169
-147 124 146 148 170
-148 125 147 149 171
-149 126 148 150 172
-150 127 149 151 173
-151 128 150 152 174
-152 129 151 153 175
-153 154 176 130 152
-154 155 177 131 153
-155 132 154 156 178
-156 133 155 157 179
-157 134 156 158 180
-158 135 157 159 181
-159 136 158 160 182
-160 137 159 161 183
-161 138 160 162 184
-162 139 161 163 185
-163 140 162 164 186
-164 165 187 141 163
-165 166 188 142 164
-166 143 165 167 189
-167 144 166 168 190
-168 145 167 169 191
-169 146 168 170 192
-170 147 169 171 193
-171 148 170 172 194
-172 149 171 173 195
-173 150 172 174 196
-174 151 173 175 197
-175 176 198 152 174
-176 177 199 153 175
-177 154 176 178 200
-178 155 177 179 201
-179 156 178 180 202
-180 157 179 181 203
-181 158 180 182 204
-182 159 181 183 205
-183 160 182 184 206
-184 161 183 185 207
-185 162 184 186 208
-186 187 209 163 185
-187 188 210 164 186
-188 165 187 189 211
-189 166 188 190 212
-190 167 189 191 213
-191 168 190 192 214
-192 169 191 193 215
-193 170 192 194 216
-194 171 193 195 217
-195 172 194 196 218
-196 173 195 197 219
-197 198 220 174 196
-198 199 221 175 197
-199 176 198 200 222
-200 177 199 201 223
-201 178 200 202 224
-202 179 201 203 225
-203 180 202 204 226
-204 181 203 205 227
-205 182 204 206 228
-206 183 205 207 229
-207 184 206 208 230
-208 209 231 185 207
-209 210 232 186 208
-210 187 209 211 233
-211 188 210 212 234
-212 189 211 213 235
-213 190 212 214 236
-214 191 213 215 237
-215 192 214 216 238
-216 193 215 217 239
-217 194 216 218 240
-218 195 217 219 241
-219 220 242 196 218
-220 221 243 197 219
-221 198 220 222 244
-222 199 221 223 245
-223 200 222 224 246
-224 201 223 225 247
-225 202 224 226 248
-226 203 225 227 249
-227 204 226 228 250
-228 205 227 229 251
-229 206 228 230 252
-230 231 253 207 229
-231 232 254 208 230
-232 209 231 233 255
-233 210 232 234 256
-234 211 233 235 257
-235 212 234 236 258
-236 213 235 237 259
-237 214 236 238 260
-238 215 237 239 261
-239 216 238 240 262
-240 217 239 241 263
-241 242 264 218 240
-242 1 243 219 241
-243 220 242 2 244
-244 221 243 3 245
-245 222 244 4 246
-246 223 245 5 247
-247 224 246 6 248
-248 225 247 7 249
-249 226 248 8 250
-250 227 249 9 251
-251 228 250 10 252
-252 11 253 229 251
-253 12 254 230 252
-254 231 253 13 255
-255 232 254 14 256
-256 233 255 15 257
-257 234 256 16 258
-258 235 257 17 259
-259 236 258 18 260
-260 237 259 19 261
-261 238 260 20 262
-262 239 261 21 263
-263 22 264 240 262
-264 1 23 241 263
0