[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 264, 3 ] =
C_264(1,43).
(I) Following is a form readable by MAGMA:
g:=Graph<264|{ {2, 3}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254,
255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243},
{240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228,
229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217},
{214, 215}, {212, 213}, {210, 211}, {208, 209}, {116, 117}, {114, 115}, {112,
113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101},
{98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85},
{82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69},
{66, 67}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18,
19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34,
35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50,
51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {118,
119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131},
{132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144,
145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157},
{158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170,
171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183},
{184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196,
197}, {198, 199}, {200, 201}, {202, 203}, {204, 205}, {206, 207}, {1, 2}, {261,
262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238},
{233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209,
210}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93,
94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {5,
6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37,
38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {121, 122},
{125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149,
150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174},
{177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201,
202}, {205, 206}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227,
228}, {219, 220}, {211, 212}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83,
84}, {75, 76}, {67, 68}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51,
52}, {59, 60}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163,
164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {203, 204}, {7, 8}, {263,
264}, {247, 248}, {231, 232}, {215, 216}, {103, 104}, {87, 88}, {71, 72}, {23,
24}, {39, 40}, {55, 56}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183,
184}, {199, 200}, {15, 16}, {239, 240}, {207, 208}, {111, 112}, {79, 80}, {47,
48}, {143, 144}, {175, 176}, {4, 47}, {212, 255}, {208, 251}, {84, 127}, {80,
123}, {68, 111}, {64, 107}, {16, 59}, {20, 63}, {128, 171}, {132, 175}, {144,
187}, {148, 191}, {192, 235}, {196, 239}, {1, 44}, {211, 254}, {209, 252}, {83,
126}, {81, 124}, {67, 110}, {65, 108}, {3, 46}, {17, 60}, {19, 62}, {129, 172},
{131, 174}, {145, 188}, {147, 190}, {193, 236}, {195, 238}, {2, 45}, {210, 253},
{82, 125}, {66, 109}, {18, 61}, {130, 173}, {146, 189}, {194, 237}, {5, 48},
{207, 250}, {79, 122}, {77, 120}, {71, 114}, {69, 112}, {7, 50}, {13, 56}, {15,
58}, {133, 176}, {135, 178}, {141, 184}, {143, 186}, {197, 240}, {199, 242},
{205, 248}, {6, 49}, {206, 249}, {78, 121}, {70, 113}, {14, 57}, {134, 177},
{142, 185}, {198, 241}, {8, 51}, {76, 119}, {72, 115}, {12, 55}, {136, 179},
{140, 183}, {200, 243}, {204, 247}, {9, 52}, {75, 118}, {73, 116}, {11, 54},
{137, 180}, {139, 182}, {201, 244}, {203, 246}, {10, 53}, {223, 224}, {95, 96},
{74, 117}, {31, 32}, {138, 181}, {159, 160}, {202, 245}, {21, 64}, {23, 66},
{29, 72}, {31, 74}, {53, 96}, {55, 98}, {61, 104}, {63, 106}, {149, 192}, {151,
194}, {157, 200}, {159, 202}, {181, 224}, {183, 226}, {189, 232}, {191, 234},
{22, 65}, {30, 73}, {54, 97}, {62, 105}, {150, 193}, {158, 201}, {182, 225},
{190, 233}, {24, 67}, {28, 71}, {56, 99}, {60, 103}, {152, 195}, {156, 199},
{184, 227}, {188, 231}, {25, 68}, {27, 70}, {57, 100}, {59, 102}, {153, 196},
{155, 198}, {185, 228}, {187, 230}, {26, 69}, {58, 101}, {154, 197}, {186, 229},
{32, 75}, {36, 79}, {48, 91}, {52, 95}, {160, 203}, {164, 207}, {176, 219},
{180, 223}, {33, 76}, {35, 78}, {49, 92}, {51, 94}, {161, 204}, {163, 206},
{177, 220}, {179, 222}, {34, 77}, {50, 93}, {162, 205}, {178, 221}, {37, 80},
{39, 82}, {45, 88}, {47, 90}, {165, 208}, {167, 210}, {173, 216}, {175, 218},
{38, 81}, {46, 89}, {166, 209}, {174, 217}, {40, 83}, {44, 87}, {168, 211},
{172, 215}, {41, 84}, {43, 86}, {169, 212}, {171, 214}, {42, 85}, {63, 64},
{170, 213}, {191, 192}, {85, 128}, {117, 160}, {95, 138}, {93, 136}, {87, 130},
{119, 162}, {125, 168}, {127, 170}, {86, 129}, {94, 137}, {118, 161}, {126,
169}, {88, 131}, {92, 135}, {120, 163}, {124, 167}, {2, 223}, {91, 134}, {89,
132}, {32, 253}, {34, 255}, {121, 164}, {123, 166}, {1, 222}, {90, 133}, {33,
254}, {122, 165}, {3, 224}, {7, 228}, {11, 232}, {15, 236}, {19, 240}, {23,
244}, {27, 248}, {31, 252}, {4, 225}, {6, 227}, {12, 233}, {14, 235}, {20, 241},
{22, 243}, {28, 249}, {30, 251}, {5, 226}, {13, 234}, {21, 242}, {29, 250}, {96,
139}, {116, 159}, {112, 155}, {100, 143}, {8, 229}, {115, 158}, {113, 156}, {99,
142}, {97, 140}, {10, 231}, {24, 245}, {26, 247}, {9, 230}, {114, 157}, {98,
141}, {25, 246}, {101, 144}, {111, 154}, {109, 152}, {103, 146}, {102, 145},
{110, 153}, {104, 147}, {108, 151}, {16, 237}, {107, 150}, {105, 148}, {18,
239}, {17, 238}, {106, 149}, {127, 128}, {1, 264}, {35, 256}, {39, 260}, {43,
264}, {36, 257}, {38, 259}, {37, 258}, {40, 261}, {42, 263}, {41, 262}, {213,
256}, {221, 264}, {215, 258}, {214, 257}, {216, 259}, {220, 263}, {217, 260},
{219, 262}, {218, 261}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 44)(3, 87)(4, 130)(5, 173)(6, 216)(7, 259)(8, 38)(9, 81)(10, 124)(11,
167)(12, 210)(13, 253)(14, 32)(15, 75)(16, 118)(17, 161)(18, 204)(19, 247)(20,
26)(21, 69)(22, 112)(23, 155)(24, 198)(25, 241)(27, 63)(28, 106)(29, 149)(30,
192)(31, 235)(33, 57)(34, 100)(35, 143)(36, 186)(37, 229)(39, 51)(40, 94)(41,
137)(42, 180)(43, 223)(46, 88)(47, 131)(48, 174)(49, 217)(50, 260)(52, 82)(53,
125)(54, 168)(55, 211)(56, 254)(58, 76)(59, 119)(60, 162)(61, 205)(62, 248)(64,
70)(65, 113)(66, 156)(67, 199)(68, 242)(71, 107)(72, 150)(73, 193)(74, 236)(77,
101)(78, 144)(79, 187)(80, 230)(83, 95)(84, 138)(85, 181)(86, 224)(90, 132)(91,
175)(92, 218)(93, 261)(96, 126)(97, 169)(98, 212)(99, 255)(102, 120)(103,
163)(104, 206)(105, 249)(108, 114)(109, 157)(110, 200)(111, 243)(115, 151)(116,
194)(117, 237)(121, 145)(122, 188)(123, 231)(127, 139)(128, 182)(129, 225)(134,
176)(135, 219)(136, 262)(140, 170)(141, 213)(142, 256)(146, 164)(147, 207)(148,
250)(152, 158)(153, 201)(154, 244)(159, 195)(160, 238)(165, 189)(166, 232)(171,
183)(172, 226)(178, 220)(179, 263)(184, 214)(185, 257)(190, 208)(191, 251)(196,
202)(197, 245)(203, 239)(209, 233)(215, 227)(222, 264)(228, 258)(234, 252)(240,
246)
c: (2, 222)(3, 179)(4, 136)(5, 93)(6, 50)(8, 228)(9, 185)(10, 142)(11, 99)(12,
56)(14, 234)(15, 191)(16, 148)(17, 105)(18, 62)(20, 240)(21, 197)(22, 154)(23,
111)(24, 68)(26, 246)(27, 203)(28, 160)(29, 117)(30, 74)(32, 252)(33, 209)(34,
166)(35, 123)(36, 80)(38, 258)(39, 215)(40, 172)(41, 129)(42, 86)(44, 264)(45,
221)(46, 178)(47, 135)(48, 92)(51, 227)(52, 184)(53, 141)(54, 98)(57, 233)(58,
190)(59, 147)(60, 104)(63, 239)(64, 196)(65, 153)(66, 110)(69, 245)(70, 202)(71,
159)(72, 116)(75, 251)(76, 208)(77, 165)(78, 122)(81, 257)(82, 214)(83, 171)(84,
128)(87, 263)(88, 220)(89, 177)(90, 134)(94, 226)(95, 183)(96, 140)(100,
232)(101, 189)(102, 146)(106, 238)(107, 195)(108, 152)(112, 244)(113, 201)(114,
158)(118, 250)(119, 207)(120, 164)(124, 256)(125, 213)(126, 170)(130, 262)(131,
219)(132, 176)(137, 225)(138, 182)(143, 231)(144, 188)(149, 237)(150, 194)(155,
243)(156, 200)(161, 249)(162, 206)(167, 255)(168, 212)(173, 261)(174, 218)(180,
224)(186, 230)(192, 236)(198, 242)(204, 248)(210, 254)(216, 260)
C4[ 264, 3 ]
264
-1 44 264 2 222
-2 1 45 3 223
-3 2 46 4 224
-4 3 47 5 225
-5 4 48 6 226
-6 5 49 7 227
-7 6 50 8 228
-8 7 51 9 229
-9 8 52 10 230
-10 11 231 9 53
-11 12 232 10 54
-12 11 55 13 233
-13 12 56 14 234
-14 13 57 15 235
-15 14 58 16 236
-16 15 59 17 237
-17 16 60 18 238
-18 17 61 19 239
-19 18 62 20 240
-20 19 63 21 241
-21 22 242 20 64
-22 23 243 21 65
-23 22 66 24 244
-24 23 67 25 245
-25 24 68 26 246
-26 25 69 27 247
-27 26 70 28 248
-28 27 71 29 249
-29 28 72 30 250
-30 29 73 31 251
-31 30 74 32 252
-32 33 253 31 75
-33 34 254 32 76
-34 33 77 35 255
-35 34 78 36 256
-36 35 79 37 257
-37 36 80 38 258
-38 37 81 39 259
-39 38 82 40 260
-40 39 83 41 261
-41 40 84 42 262
-42 41 85 43 263
-43 44 264 42 86
-44 1 45 43 87
-45 44 88 2 46
-46 45 89 3 47
-47 46 90 4 48
-48 47 91 5 49
-49 48 92 6 50
-50 49 93 7 51
-51 50 94 8 52
-52 51 95 9 53
-53 52 96 10 54
-54 11 55 53 97
-55 12 56 54 98
-56 55 99 13 57
-57 56 100 14 58
-58 57 101 15 59
-59 58 102 16 60
-60 59 103 17 61
-61 60 104 18 62
-62 61 105 19 63
-63 62 106 20 64
-64 63 107 21 65
-65 22 66 64 108
-66 23 67 65 109
-67 66 110 24 68
-68 67 111 25 69
-69 68 112 26 70
-70 69 113 27 71
-71 70 114 28 72
-72 71 115 29 73
-73 72 116 30 74
-74 73 117 31 75
-75 74 118 32 76
-76 33 77 75 119
-77 34 78 76 120
-78 77 121 35 79
-79 78 122 36 80
-80 79 123 37 81
-81 80 124 38 82
-82 81 125 39 83
-83 82 126 40 84
-84 83 127 41 85
-85 84 128 42 86
-86 85 129 43 87
-87 44 88 86 130
-88 45 89 87 131
-89 88 132 46 90
-90 89 133 47 91
-91 90 134 48 92
-92 91 135 49 93
-93 92 136 50 94
-94 93 137 51 95
-95 94 138 52 96
-96 95 139 53 97
-97 96 140 54 98
-98 55 99 97 141
-99 56 100 98 142
-100 99 143 57 101
-101 100 144 58 102
-102 101 145 59 103
-103 102 146 60 104
-104 103 147 61 105
-105 104 148 62 106
-106 105 149 63 107
-107 106 150 64 108
-108 107 151 65 109
-109 66 110 108 152
-110 67 111 109 153
-111 110 154 68 112
-112 111 155 69 113
-113 112 156 70 114
-114 113 157 71 115
-115 114 158 72 116
-116 115 159 73 117
-117 116 160 74 118
-118 117 161 75 119
-119 118 162 76 120
-120 77 121 119 163
-121 78 122 120 164
-122 121 165 79 123
-123 122 166 80 124
-124 123 167 81 125
-125 124 168 82 126
-126 125 169 83 127
-127 126 170 84 128
-128 127 171 85 129
-129 128 172 86 130
-130 129 173 87 131
-131 88 132 130 174
-132 89 133 131 175
-133 132 176 90 134
-134 133 177 91 135
-135 134 178 92 136
-136 135 179 93 137
-137 136 180 94 138
-138 137 181 95 139
-139 138 182 96 140
-140 139 183 97 141
-141 140 184 98 142
-142 99 143 141 185
-143 100 144 142 186
-144 143 187 101 145
-145 144 188 102 146
-146 145 189 103 147
-147 146 190 104 148
-148 147 191 105 149
-149 148 192 106 150
-150 149 193 107 151
-151 150 194 108 152
-152 151 195 109 153
-153 110 154 152 196
-154 111 155 153 197
-155 154 198 112 156
-156 155 199 113 157
-157 156 200 114 158
-158 157 201 115 159
-159 158 202 116 160
-160 159 203 117 161
-161 160 204 118 162
-162 161 205 119 163
-163 162 206 120 164
-164 121 165 163 207
-165 122 166 164 208
-166 165 209 123 167
-167 166 210 124 168
-168 167 211 125 169
-169 168 212 126 170
-170 169 213 127 171
-171 170 214 128 172
-172 171 215 129 173
-173 172 216 130 174
-174 173 217 131 175
-175 132 176 174 218
-176 133 177 175 219
-177 176 220 134 178
-178 177 221 135 179
-179 178 222 136 180
-180 179 223 137 181
-181 180 224 138 182
-182 181 225 139 183
-183 182 226 140 184
-184 183 227 141 185
-185 184 228 142 186
-186 143 187 185 229
-187 144 188 186 230
-188 187 231 145 189
-189 188 232 146 190
-190 189 233 147 191
-191 190 234 148 192
-192 191 235 149 193
-193 192 236 150 194
-194 193 237 151 195
-195 194 238 152 196
-196 195 239 153 197
-197 154 198 196 240
-198 155 199 197 241
-199 198 242 156 200
-200 199 243 157 201
-201 200 244 158 202
-202 201 245 159 203
-203 202 246 160 204
-204 203 247 161 205
-205 204 248 162 206
-206 205 249 163 207
-207 206 250 164 208
-208 165 209 207 251
-209 166 210 208 252
-210 209 253 167 211
-211 210 254 168 212
-212 211 255 169 213
-213 212 256 170 214
-214 213 257 171 215
-215 214 258 172 216
-216 215 259 173 217
-217 216 260 174 218
-218 217 261 175 219
-219 176 220 218 262
-220 177 221 219 263
-221 220 264 178 222
-222 1 221 179 223
-223 2 222 180 224
-224 3 223 181 225
-225 4 224 182 226
-226 5 225 183 227
-227 6 226 184 228
-228 7 227 185 229
-229 8 228 186 230
-230 187 231 9 229
-231 188 232 10 230
-232 11 231 189 233
-233 12 232 190 234
-234 13 233 191 235
-235 14 234 192 236
-236 15 235 193 237
-237 16 236 194 238
-238 17 237 195 239
-239 18 238 196 240
-240 19 239 197 241
-241 198 242 20 240
-242 199 243 21 241
-243 22 242 200 244
-244 23 243 201 245
-245 24 244 202 246
-246 25 245 203 247
-247 26 246 204 248
-248 27 247 205 249
-249 28 248 206 250
-250 29 249 207 251
-251 30 250 208 252
-252 209 253 31 251
-253 210 254 32 252
-254 33 253 211 255
-255 34 254 212 256
-256 35 255 213 257
-257 36 256 214 258
-258 37 257 215 259
-259 38 258 216 260
-260 39 259 217 261
-261 40 260 218 262
-262 41 261 219 263
-263 220 264 42 262
-264 1 221 43 263
0