C4graphGraph forms for C4 [ 264, 4 ] = C_264(1,65)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 264, 4 ] = C_264(1,65).

(I) Following is a form readable by MAGMA:

g:=Graph<264|{ {2, 3}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {1, 2}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {2, 67}, {190, 255}, {188, 253}, {62, 127}, {60, 125}, {58, 123}, {56, 121}, {54, 119}, {52, 117}, {4, 69}, {6, 71}, {8, 73}, {10, 75}, {12, 77}, {14, 79}, {16, 81}, {18, 83}, {20, 85}, {22, 87}, {24, 89}, {26, 91}, {28, 93}, {30, 95}, {32, 97}, {34, 99}, {36, 101}, {38, 103}, {40, 105}, {42, 107}, {44, 109}, {46, 111}, {48, 113}, {50, 115}, {128, 193}, {130, 195}, {132, 197}, {134, 199}, {136, 201}, {138, 203}, {140, 205}, {142, 207}, {144, 209}, {146, 211}, {148, 213}, {150, 215}, {152, 217}, {154, 219}, {156, 221}, {158, 223}, {160, 225}, {162, 227}, {164, 229}, {166, 231}, {168, 233}, {170, 235}, {172, 237}, {174, 239}, {176, 241}, {178, 243}, {180, 245}, {182, 247}, {184, 249}, {186, 251}, {1, 66}, {189, 254}, {61, 126}, {57, 122}, {53, 118}, {5, 70}, {9, 74}, {13, 78}, {17, 82}, {21, 86}, {25, 90}, {29, 94}, {33, 98}, {37, 102}, {41, 106}, {45, 110}, {49, 114}, {129, 194}, {133, 198}, {137, 202}, {141, 206}, {145, 210}, {149, 214}, {153, 218}, {157, 222}, {161, 226}, {165, 230}, {169, 234}, {173, 238}, {177, 242}, {181, 246}, {185, 250}, {3, 68}, {187, 252}, {59, 124}, {11, 76}, {19, 84}, {27, 92}, {35, 100}, {43, 108}, {51, 116}, {131, 196}, {139, 204}, {147, 212}, {155, 220}, {163, 228}, {171, 236}, {179, 244}, {7, 72}, {55, 120}, {23, 88}, {39, 104}, {135, 200}, {151, 216}, {167, 232}, {183, 248}, {15, 80}, {47, 112}, {143, 208}, {175, 240}, {31, 96}, {191, 192}, {63, 64}, {159, 224}, {63, 128}, {127, 192}, {64, 129}, {96, 161}, {94, 159}, {92, 157}, {90, 155}, {88, 153}, {86, 151}, {84, 149}, {82, 147}, {80, 145}, {78, 143}, {76, 141}, {74, 139}, {72, 137}, {70, 135}, {68, 133}, {66, 131}, {98, 163}, {100, 165}, {102, 167}, {104, 169}, {106, 171}, {108, 173}, {110, 175}, {112, 177}, {114, 179}, {116, 181}, {118, 183}, {120, 185}, {122, 187}, {124, 189}, {126, 191}, {65, 130}, {97, 162}, {93, 158}, {89, 154}, {85, 150}, {81, 146}, {77, 142}, {73, 138}, {69, 134}, {101, 166}, {105, 170}, {109, 174}, {113, 178}, {117, 182}, {121, 186}, {125, 190}, {8, 207}, {91, 156}, {83, 148}, {75, 140}, {67, 132}, {56, 255}, {16, 215}, {24, 223}, {32, 231}, {40, 239}, {48, 247}, {99, 164}, {107, 172}, {115, 180}, {123, 188}, {1, 200}, {55, 254}, {53, 252}, {51, 250}, {3, 202}, {5, 204}, {7, 206}, {17, 216}, {19, 218}, {21, 220}, {23, 222}, {33, 232}, {35, 234}, {37, 236}, {39, 238}, {49, 248}, {2, 201}, {54, 253}, {6, 205}, {18, 217}, {22, 221}, {34, 233}, {38, 237}, {50, 249}, {4, 203}, {87, 152}, {71, 136}, {52, 251}, {20, 219}, {36, 235}, {103, 168}, {119, 184}, {9, 208}, {11, 210}, {13, 212}, {15, 214}, {41, 240}, {43, 242}, {45, 244}, {47, 246}, {10, 209}, {14, 213}, {42, 241}, {46, 245}, {12, 211}, {79, 144}, {44, 243}, {111, 176}, {25, 224}, {27, 226}, {29, 228}, {31, 230}, {26, 225}, {30, 229}, {28, 227}, {95, 160}, {127, 128}, {1, 264}, {57, 256}, {63, 262}, {61, 260}, {59, 258}, {58, 257}, {62, 261}, {60, 259}, {64, 263}, {65, 264}, {191, 256}, {192, 257}, {198, 263}, {196, 261}, {194, 259}, {193, 258}, {197, 262}, {195, 260}, {199, 264}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264)
b: (2, 66)(3, 131)(4, 196)(5, 261)(6, 62)(7, 127)(8, 192)(9, 257)(10, 58)(11, 123)(12, 188)(13, 253)(14, 54)(15, 119)(16, 184)(17, 249)(18, 50)(19, 115)(20, 180)(21, 245)(22, 46)(23, 111)(24, 176)(25, 241)(26, 42)(27, 107)(28, 172)(29, 237)(30, 38)(31, 103)(32, 168)(33, 233)(35, 99)(36, 164)(37, 229)(39, 95)(40, 160)(41, 225)(43, 91)(44, 156)(45, 221)(47, 87)(48, 152)(49, 217)(51, 83)(52, 148)(53, 213)(55, 79)(56, 144)(57, 209)(59, 75)(60, 140)(61, 205)(63, 71)(64, 136)(65, 201)(68, 132)(69, 197)(70, 262)(72, 128)(73, 193)(74, 258)(76, 124)(77, 189)(78, 254)(80, 120)(81, 185)(82, 250)(84, 116)(85, 181)(86, 246)(88, 112)(89, 177)(90, 242)(92, 108)(93, 173)(94, 238)(96, 104)(97, 169)(98, 234)(101, 165)(102, 230)(105, 161)(106, 226)(109, 157)(110, 222)(113, 153)(114, 218)(117, 149)(118, 214)(121, 145)(122, 210)(125, 141)(126, 206)(129, 137)(130, 202)(134, 198)(135, 263)(138, 194)(139, 259)(142, 190)(143, 255)(146, 186)(147, 251)(150, 182)(151, 247)(154, 178)(155, 243)(158, 174)(159, 239)(162, 170)(163, 235)(167, 231)(171, 227)(175, 223)(179, 219)(183, 215)(187, 211)(191, 207)(195, 203)(200, 264)(204, 260)(208, 256)(212, 252)(216, 248)(220, 244)(224, 240)(228, 236)
c: (2, 200)(3, 135)(4, 70)(6, 204)(7, 139)(8, 74)(10, 208)(11, 143)(12, 78)(14, 212)(15, 147)(16, 82)(18, 216)(19, 151)(20, 86)(22, 220)(23, 155)(24, 90)(26, 224)(27, 159)(28, 94)(30, 228)(31, 163)(32, 98)(34, 232)(35, 167)(36, 102)(38, 236)(39, 171)(40, 106)(42, 240)(43, 175)(44, 110)(46, 244)(47, 179)(48, 114)(50, 248)(51, 183)(52, 118)(54, 252)(55, 187)(56, 122)(58, 256)(59, 191)(60, 126)(62, 260)(63, 195)(64, 130)(66, 264)(67, 199)(68, 134)(71, 203)(72, 138)(75, 207)(76, 142)(79, 211)(80, 146)(83, 215)(84, 150)(87, 219)(88, 154)(91, 223)(92, 158)(95, 227)(96, 162)(99, 231)(100, 166)(103, 235)(104, 170)(107, 239)(108, 174)(111, 243)(112, 178)(115, 247)(116, 182)(119, 251)(120, 186)(123, 255)(124, 190)(127, 259)(128, 194)(131, 263)(132, 198)(136, 202)(140, 206)(144, 210)(148, 214)(152, 218)(156, 222)(160, 226)(164, 230)(168, 234)(172, 238)(176, 242)(180, 246)(184, 250)(188, 254)(192, 258)(196, 262)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 264, 4 ]
264
-1 66 264 2 200
-2 1 67 3 201
-3 2 68 4 202
-4 3 69 5 203
-5 4 70 6 204
-6 5 71 7 205
-7 6 72 8 206
-8 7 73 9 207
-9 8 74 10 208
-10 11 209 9 75
-11 12 210 10 76
-12 11 77 13 211
-13 12 78 14 212
-14 13 79 15 213
-15 14 80 16 214
-16 15 81 17 215
-17 16 82 18 216
-18 17 83 19 217
-19 18 84 20 218
-20 19 85 21 219
-21 22 220 20 86
-22 23 221 21 87
-23 22 88 24 222
-24 23 89 25 223
-25 24 90 26 224
-26 25 91 27 225
-27 26 92 28 226
-28 27 93 29 227
-29 28 94 30 228
-30 29 95 31 229
-31 30 96 32 230
-32 33 231 31 97
-33 34 232 32 98
-34 33 99 35 233
-35 34 100 36 234
-36 35 101 37 235
-37 36 102 38 236
-38 37 103 39 237
-39 38 104 40 238
-40 39 105 41 239
-41 40 106 42 240
-42 41 107 43 241
-43 44 242 42 108
-44 45 243 43 109
-45 44 110 46 244
-46 45 111 47 245
-47 46 112 48 246
-48 47 113 49 247
-49 48 114 50 248
-50 49 115 51 249
-51 50 116 52 250
-52 51 117 53 251
-53 52 118 54 252
-54 55 253 53 119
-55 56 254 54 120
-56 55 121 57 255
-57 56 122 58 256
-58 57 123 59 257
-59 58 124 60 258
-60 59 125 61 259
-61 60 126 62 260
-62 61 127 63 261
-63 62 128 64 262
-64 63 129 65 263
-65 66 264 64 130
-66 1 67 65 131
-67 66 132 2 68
-68 67 133 3 69
-69 68 134 4 70
-70 69 135 5 71
-71 70 136 6 72
-72 71 137 7 73
-73 72 138 8 74
-74 73 139 9 75
-75 74 140 10 76
-76 11 77 75 141
-77 12 78 76 142
-78 77 143 13 79
-79 78 144 14 80
-80 79 145 15 81
-81 80 146 16 82
-82 81 147 17 83
-83 82 148 18 84
-84 83 149 19 85
-85 84 150 20 86
-86 85 151 21 87
-87 22 88 86 152
-88 23 89 87 153
-89 88 154 24 90
-90 89 155 25 91
-91 90 156 26 92
-92 91 157 27 93
-93 92 158 28 94
-94 93 159 29 95
-95 94 160 30 96
-96 95 161 31 97
-97 96 162 32 98
-98 33 99 97 163
-99 34 100 98 164
-100 99 165 35 101
-101 100 166 36 102
-102 101 167 37 103
-103 102 168 38 104
-104 103 169 39 105
-105 104 170 40 106
-106 105 171 41 107
-107 106 172 42 108
-108 107 173 43 109
-109 44 110 108 174
-110 45 111 109 175
-111 110 176 46 112
-112 111 177 47 113
-113 112 178 48 114
-114 113 179 49 115
-115 114 180 50 116
-116 115 181 51 117
-117 116 182 52 118
-118 117 183 53 119
-119 118 184 54 120
-120 55 121 119 185
-121 56 122 120 186
-122 121 187 57 123
-123 122 188 58 124
-124 123 189 59 125
-125 124 190 60 126
-126 125 191 61 127
-127 126 192 62 128
-128 127 193 63 129
-129 128 194 64 130
-130 129 195 65 131
-131 66 132 130 196
-132 67 133 131 197
-133 132 198 68 134
-134 133 199 69 135
-135 134 200 70 136
-136 135 201 71 137
-137 136 202 72 138
-138 137 203 73 139
-139 138 204 74 140
-140 139 205 75 141
-141 140 206 76 142
-142 77 143 141 207
-143 78 144 142 208
-144 143 209 79 145
-145 144 210 80 146
-146 145 211 81 147
-147 146 212 82 148
-148 147 213 83 149
-149 148 214 84 150
-150 149 215 85 151
-151 150 216 86 152
-152 151 217 87 153
-153 88 154 152 218
-154 89 155 153 219
-155 154 220 90 156
-156 155 221 91 157
-157 156 222 92 158
-158 157 223 93 159
-159 158 224 94 160
-160 159 225 95 161
-161 160 226 96 162
-162 161 227 97 163
-163 162 228 98 164
-164 99 165 163 229
-165 100 166 164 230
-166 165 231 101 167
-167 166 232 102 168
-168 167 233 103 169
-169 168 234 104 170
-170 169 235 105 171
-171 170 236 106 172
-172 171 237 107 173
-173 172 238 108 174
-174 173 239 109 175
-175 110 176 174 240
-176 111 177 175 241
-177 176 242 112 178
-178 177 243 113 179
-179 178 244 114 180
-180 179 245 115 181
-181 180 246 116 182
-182 181 247 117 183
-183 182 248 118 184
-184 183 249 119 185
-185 184 250 120 186
-186 121 187 185 251
-187 122 188 186 252
-188 187 253 123 189
-189 188 254 124 190
-190 189 255 125 191
-191 190 256 126 192
-192 191 257 127 193
-193 192 258 128 194
-194 193 259 129 195
-195 194 260 130 196
-196 195 261 131 197
-197 132 198 196 262
-198 133 199 197 263
-199 198 264 134 200
-200 1 199 135 201
-201 2 200 136 202
-202 3 201 137 203
-203 4 202 138 204
-204 5 203 139 205
-205 6 204 140 206
-206 7 205 141 207
-207 8 206 142 208
-208 143 209 9 207
-209 144 210 10 208
-210 11 209 145 211
-211 12 210 146 212
-212 13 211 147 213
-213 14 212 148 214
-214 15 213 149 215
-215 16 214 150 216
-216 17 215 151 217
-217 18 216 152 218
-218 19 217 153 219
-219 154 220 20 218
-220 155 221 21 219
-221 22 220 156 222
-222 23 221 157 223
-223 24 222 158 224
-224 25 223 159 225
-225 26 224 160 226
-226 27 225 161 227
-227 28 226 162 228
-228 29 227 163 229
-229 30 228 164 230
-230 165 231 31 229
-231 166 232 32 230
-232 33 231 167 233
-233 34 232 168 234
-234 35 233 169 235
-235 36 234 170 236
-236 37 235 171 237
-237 38 236 172 238
-238 39 237 173 239
-239 40 238 174 240
-240 41 239 175 241
-241 176 242 42 240
-242 177 243 43 241
-243 44 242 178 244
-244 45 243 179 245
-245 46 244 180 246
-246 47 245 181 247
-247 48 246 182 248
-248 49 247 183 249
-249 50 248 184 250
-250 51 249 185 251
-251 52 250 186 252
-252 187 253 53 251
-253 188 254 54 252
-254 55 253 189 255
-255 56 254 190 256
-256 57 255 191 257
-257 58 256 192 258
-258 59 257 193 259
-259 60 258 194 260
-260 61 259 195 261
-261 62 260 196 262
-262 63 261 197 263
-263 198 264 64 262
-264 1 199 65 263
0

**************