C4graphGraph forms for C4 [ 264, 5 ] = C_264(1,67)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 264, 5 ] = C_264(1,67).

(I) Following is a form readable by MAGMA:

g:=Graph<264|{ {2, 3}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {1, 2}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {4, 71}, {188, 255}, {60, 127}, {56, 123}, {8, 75}, {12, 79}, {16, 83}, {20, 87}, {24, 91}, {28, 95}, {32, 99}, {36, 103}, {40, 107}, {44, 111}, {48, 115}, {52, 119}, {128, 195}, {132, 199}, {136, 203}, {140, 207}, {144, 211}, {148, 215}, {152, 219}, {156, 223}, {160, 227}, {164, 231}, {168, 235}, {172, 239}, {176, 243}, {180, 247}, {184, 251}, {1, 68}, {59, 126}, {57, 124}, {3, 70}, {9, 76}, {11, 78}, {17, 84}, {19, 86}, {25, 92}, {27, 94}, {33, 100}, {35, 102}, {41, 108}, {43, 110}, {49, 116}, {51, 118}, {129, 196}, {131, 198}, {137, 204}, {139, 206}, {145, 212}, {147, 214}, {153, 220}, {155, 222}, {161, 228}, {163, 230}, {169, 236}, {171, 238}, {177, 244}, {179, 246}, {185, 252}, {187, 254}, {2, 69}, {58, 125}, {10, 77}, {18, 85}, {26, 93}, {34, 101}, {42, 109}, {50, 117}, {130, 197}, {138, 205}, {146, 213}, {154, 221}, {162, 229}, {170, 237}, {178, 245}, {186, 253}, {5, 72}, {55, 122}, {53, 120}, {7, 74}, {21, 88}, {23, 90}, {37, 104}, {39, 106}, {133, 200}, {135, 202}, {149, 216}, {151, 218}, {165, 232}, {167, 234}, {181, 248}, {183, 250}, {6, 73}, {54, 121}, {22, 89}, {38, 105}, {134, 201}, {150, 217}, {166, 233}, {182, 249}, {13, 80}, {15, 82}, {45, 112}, {47, 114}, {141, 208}, {143, 210}, {173, 240}, {175, 242}, {14, 81}, {46, 113}, {142, 209}, {174, 241}, {29, 96}, {31, 98}, {157, 224}, {159, 226}, {30, 97}, {191, 192}, {63, 64}, {158, 225}, {61, 128}, {63, 130}, {125, 192}, {127, 194}, {62, 129}, {126, 193}, {64, 131}, {96, 163}, {92, 159}, {88, 155}, {84, 151}, {80, 147}, {76, 143}, {72, 139}, {68, 135}, {100, 167}, {104, 171}, {108, 175}, {112, 179}, {116, 183}, {120, 187}, {124, 191}, {2, 199}, {99, 166}, {97, 164}, {91, 158}, {89, 156}, {83, 150}, {81, 148}, {75, 142}, {73, 140}, {67, 134}, {65, 132}, {58, 255}, {56, 253}, {8, 205}, {10, 207}, {16, 213}, {18, 215}, {24, 221}, {26, 223}, {32, 229}, {34, 231}, {40, 237}, {42, 239}, {48, 245}, {50, 247}, {105, 172}, {107, 174}, {113, 180}, {115, 182}, {121, 188}, {123, 190}, {1, 198}, {98, 165}, {90, 157}, {82, 149}, {74, 141}, {66, 133}, {57, 254}, {9, 206}, {17, 214}, {25, 222}, {33, 230}, {41, 238}, {49, 246}, {106, 173}, {114, 181}, {122, 189}, {3, 200}, {55, 252}, {7, 204}, {19, 216}, {23, 220}, {35, 232}, {39, 236}, {51, 248}, {4, 201}, {87, 154}, {85, 152}, {71, 138}, {69, 136}, {54, 251}, {6, 203}, {20, 217}, {22, 219}, {36, 233}, {38, 235}, {52, 249}, {101, 168}, {103, 170}, {117, 184}, {119, 186}, {5, 202}, {86, 153}, {70, 137}, {53, 250}, {21, 218}, {37, 234}, {102, 169}, {118, 185}, {11, 208}, {15, 212}, {43, 240}, {47, 244}, {12, 209}, {79, 146}, {77, 144}, {14, 211}, {44, 241}, {46, 243}, {109, 176}, {111, 178}, {13, 210}, {78, 145}, {45, 242}, {110, 177}, {27, 224}, {31, 228}, {28, 225}, {95, 162}, {93, 160}, {30, 227}, {29, 226}, {94, 161}, {127, 128}, {1, 264}, {59, 256}, {63, 260}, {60, 257}, {62, 259}, {61, 258}, {64, 261}, {66, 263}, {65, 262}, {67, 264}, {189, 256}, {191, 258}, {190, 257}, {192, 259}, {196, 263}, {193, 260}, {195, 262}, {194, 261}, {197, 264}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264)
b: (2, 198)(3, 131)(4, 64)(5, 261)(6, 194)(7, 127)(8, 60)(9, 257)(10, 190)(11, 123)(12, 56)(13, 253)(14, 186)(15, 119)(16, 52)(17, 249)(18, 182)(19, 115)(20, 48)(21, 245)(22, 178)(23, 111)(24, 44)(25, 241)(26, 174)(27, 107)(28, 40)(29, 237)(30, 170)(31, 103)(32, 36)(33, 233)(34, 166)(35, 99)(37, 229)(38, 162)(39, 95)(41, 225)(42, 158)(43, 91)(45, 221)(46, 154)(47, 87)(49, 217)(50, 150)(51, 83)(53, 213)(54, 146)(55, 79)(57, 209)(58, 142)(59, 75)(61, 205)(62, 138)(63, 71)(65, 201)(66, 134)(68, 264)(69, 197)(70, 130)(72, 260)(73, 193)(74, 126)(76, 256)(77, 189)(78, 122)(80, 252)(81, 185)(82, 118)(84, 248)(85, 181)(86, 114)(88, 244)(89, 177)(90, 110)(92, 240)(93, 173)(94, 106)(96, 236)(97, 169)(98, 102)(100, 232)(101, 165)(104, 228)(105, 161)(108, 224)(109, 157)(112, 220)(113, 153)(116, 216)(117, 149)(120, 212)(121, 145)(124, 208)(125, 141)(128, 204)(129, 137)(132, 200)(135, 263)(136, 196)(139, 259)(140, 192)(143, 255)(144, 188)(147, 251)(148, 184)(151, 247)(152, 180)(155, 243)(156, 176)(159, 239)(160, 172)(163, 235)(164, 168)(167, 231)(171, 227)(175, 223)(179, 219)(183, 215)(187, 211)(191, 207)(195, 203)(202, 262)(206, 258)(210, 254)(214, 250)(218, 246)(222, 242)(226, 238)(230, 234)
c: (2, 68)(3, 135)(4, 202)(6, 72)(7, 139)(8, 206)(10, 76)(11, 143)(12, 210)(14, 80)(15, 147)(16, 214)(18, 84)(19, 151)(20, 218)(22, 88)(23, 155)(24, 222)(26, 92)(27, 159)(28, 226)(30, 96)(31, 163)(32, 230)(34, 100)(35, 167)(36, 234)(38, 104)(39, 171)(40, 238)(42, 108)(43, 175)(44, 242)(46, 112)(47, 179)(48, 246)(50, 116)(51, 183)(52, 250)(54, 120)(55, 187)(56, 254)(58, 124)(59, 191)(60, 258)(62, 128)(63, 195)(64, 262)(66, 132)(67, 199)(70, 136)(71, 203)(74, 140)(75, 207)(78, 144)(79, 211)(82, 148)(83, 215)(86, 152)(87, 219)(90, 156)(91, 223)(94, 160)(95, 227)(98, 164)(99, 231)(102, 168)(103, 235)(106, 172)(107, 239)(110, 176)(111, 243)(114, 180)(115, 247)(118, 184)(119, 251)(122, 188)(123, 255)(126, 192)(127, 259)(130, 196)(131, 263)(134, 200)(138, 204)(142, 208)(146, 212)(150, 216)(154, 220)(158, 224)(162, 228)(166, 232)(170, 236)(174, 240)(178, 244)(182, 248)(186, 252)(190, 256)(194, 260)(198, 264)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 264, 5 ]
264
-1 198 264 2 68
-2 1 199 3 69
-3 2 200 4 70
-4 3 201 5 71
-5 4 202 6 72
-6 5 203 7 73
-7 6 204 8 74
-8 7 205 9 75
-9 8 206 10 76
-10 11 77 9 207
-11 12 78 10 208
-12 11 209 13 79
-13 12 210 14 80
-14 13 211 15 81
-15 14 212 16 82
-16 15 213 17 83
-17 16 214 18 84
-18 17 215 19 85
-19 18 216 20 86
-20 19 217 21 87
-21 22 88 20 218
-22 23 89 21 219
-23 22 220 24 90
-24 23 221 25 91
-25 24 222 26 92
-26 25 223 27 93
-27 26 224 28 94
-28 27 225 29 95
-29 28 226 30 96
-30 29 227 31 97
-31 30 228 32 98
-32 33 99 31 229
-33 34 100 32 230
-34 33 231 35 101
-35 34 232 36 102
-36 35 233 37 103
-37 36 234 38 104
-38 37 235 39 105
-39 38 236 40 106
-40 39 237 41 107
-41 40 238 42 108
-42 41 239 43 109
-43 44 110 42 240
-44 45 111 43 241
-45 44 242 46 112
-46 45 243 47 113
-47 46 244 48 114
-48 47 245 49 115
-49 48 246 50 116
-50 49 247 51 117
-51 50 248 52 118
-52 51 249 53 119
-53 52 250 54 120
-54 55 121 53 251
-55 56 122 54 252
-56 55 253 57 123
-57 56 254 58 124
-58 57 255 59 125
-59 58 256 60 126
-60 59 257 61 127
-61 60 258 62 128
-62 61 259 63 129
-63 62 260 64 130
-64 63 261 65 131
-65 66 132 64 262
-66 67 133 65 263
-67 66 264 68 134
-68 1 67 69 135
-69 2 68 70 136
-70 3 69 71 137
-71 4 70 72 138
-72 5 71 73 139
-73 6 72 74 140
-74 7 73 75 141
-75 8 74 76 142
-76 77 143 9 75
-77 78 144 10 76
-78 11 77 79 145
-79 12 78 80 146
-80 13 79 81 147
-81 14 80 82 148
-82 15 81 83 149
-83 16 82 84 150
-84 17 83 85 151
-85 18 84 86 152
-86 19 85 87 153
-87 88 154 20 86
-88 89 155 21 87
-89 22 88 90 156
-90 23 89 91 157
-91 24 90 92 158
-92 25 91 93 159
-93 26 92 94 160
-94 27 93 95 161
-95 28 94 96 162
-96 29 95 97 163
-97 30 96 98 164
-98 99 165 31 97
-99 100 166 32 98
-100 33 99 101 167
-101 34 100 102 168
-102 35 101 103 169
-103 36 102 104 170
-104 37 103 105 171
-105 38 104 106 172
-106 39 105 107 173
-107 40 106 108 174
-108 41 107 109 175
-109 110 176 42 108
-110 111 177 43 109
-111 44 110 112 178
-112 45 111 113 179
-113 46 112 114 180
-114 47 113 115 181
-115 48 114 116 182
-116 49 115 117 183
-117 50 116 118 184
-118 51 117 119 185
-119 52 118 120 186
-120 121 187 53 119
-121 122 188 54 120
-122 55 121 123 189
-123 56 122 124 190
-124 57 123 125 191
-125 58 124 126 192
-126 59 125 127 193
-127 60 126 128 194
-128 61 127 129 195
-129 62 128 130 196
-130 63 129 131 197
-131 132 198 64 130
-132 133 199 65 131
-133 66 132 134 200
-134 67 133 135 201
-135 68 134 136 202
-136 69 135 137 203
-137 70 136 138 204
-138 71 137 139 205
-139 72 138 140 206
-140 73 139 141 207
-141 74 140 142 208
-142 143 209 75 141
-143 144 210 76 142
-144 77 143 145 211
-145 78 144 146 212
-146 79 145 147 213
-147 80 146 148 214
-148 81 147 149 215
-149 82 148 150 216
-150 83 149 151 217
-151 84 150 152 218
-152 85 151 153 219
-153 154 220 86 152
-154 155 221 87 153
-155 88 154 156 222
-156 89 155 157 223
-157 90 156 158 224
-158 91 157 159 225
-159 92 158 160 226
-160 93 159 161 227
-161 94 160 162 228
-162 95 161 163 229
-163 96 162 164 230
-164 165 231 97 163
-165 166 232 98 164
-166 99 165 167 233
-167 100 166 168 234
-168 101 167 169 235
-169 102 168 170 236
-170 103 169 171 237
-171 104 170 172 238
-172 105 171 173 239
-173 106 172 174 240
-174 107 173 175 241
-175 176 242 108 174
-176 177 243 109 175
-177 110 176 178 244
-178 111 177 179 245
-179 112 178 180 246
-180 113 179 181 247
-181 114 180 182 248
-182 115 181 183 249
-183 116 182 184 250
-184 117 183 185 251
-185 118 184 186 252
-186 187 253 119 185
-187 188 254 120 186
-188 121 187 189 255
-189 122 188 190 256
-190 123 189 191 257
-191 124 190 192 258
-192 125 191 193 259
-193 126 192 194 260
-194 127 193 195 261
-195 128 194 196 262
-196 129 195 197 263
-197 198 264 130 196
-198 1 199 131 197
-199 132 198 2 200
-200 133 199 3 201
-201 134 200 4 202
-202 135 201 5 203
-203 136 202 6 204
-204 137 203 7 205
-205 138 204 8 206
-206 139 205 9 207
-207 140 206 10 208
-208 11 209 141 207
-209 12 210 142 208
-210 143 209 13 211
-211 144 210 14 212
-212 145 211 15 213
-213 146 212 16 214
-214 147 213 17 215
-215 148 214 18 216
-216 149 215 19 217
-217 150 216 20 218
-218 151 217 21 219
-219 22 220 152 218
-220 23 221 153 219
-221 154 220 24 222
-222 155 221 25 223
-223 156 222 26 224
-224 157 223 27 225
-225 158 224 28 226
-226 159 225 29 227
-227 160 226 30 228
-228 161 227 31 229
-229 162 228 32 230
-230 33 231 163 229
-231 34 232 164 230
-232 165 231 35 233
-233 166 232 36 234
-234 167 233 37 235
-235 168 234 38 236
-236 169 235 39 237
-237 170 236 40 238
-238 171 237 41 239
-239 172 238 42 240
-240 173 239 43 241
-241 44 242 174 240
-242 45 243 175 241
-243 176 242 46 244
-244 177 243 47 245
-245 178 244 48 246
-246 179 245 49 247
-247 180 246 50 248
-248 181 247 51 249
-249 182 248 52 250
-250 183 249 53 251
-251 184 250 54 252
-252 55 253 185 251
-253 56 254 186 252
-254 187 253 57 255
-255 188 254 58 256
-256 189 255 59 257
-257 190 256 60 258
-258 191 257 61 259
-259 192 258 62 260
-260 193 259 63 261
-261 194 260 64 262
-262 195 261 65 263
-263 66 264 196 262
-264 1 67 197 263
0

**************