[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 264, 6 ] =
C_264(1,89).
(I) Following is a form readable by MAGMA:
g:=Graph<264|{ {2, 3}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254,
255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243},
{240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228,
229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217},
{214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202,
203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {94, 95}, {92, 93}, {90,
91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74,
75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58,
59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17},
{18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33},
{34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49},
{50, 51}, {52, 53}, {54, 55}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104,
105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117},
{118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130,
131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143},
{144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156,
157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169},
{170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182,
183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {1, 2}, {261,
262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238},
{233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209,
210}, {205, 206}, {201, 202}, {197, 198}, {93, 94}, {89, 90}, {85, 86}, {81,
82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9,
10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41,
42}, {45, 46}, {49, 50}, {53, 54}, {97, 98}, {101, 102}, {105, 106}, {109, 110},
{113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137,
138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162},
{165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189,
190}, {193, 194}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227,
228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {91, 92}, {83, 84}, {75,
76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51,
52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140},
{147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {7, 8},
{263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72},
{23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152},
{167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48},
{111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160},
{2, 91}, {4, 93}, {6, 95}, {32, 121}, {34, 123}, {36, 125}, {38, 127}, {128,
217}, {130, 219}, {132, 221}, {134, 223}, {160, 249}, {162, 251}, {164, 253},
{166, 255}, {1, 90}, {5, 94}, {33, 122}, {37, 126}, {129, 218}, {133, 222},
{161, 250}, {165, 254}, {3, 92}, {35, 124}, {131, 220}, {163, 252}, {7, 96},
{15, 104}, {23, 112}, {31, 120}, {135, 224}, {143, 232}, {151, 240}, {159, 248},
{8, 97}, {10, 99}, {12, 101}, {14, 103}, {24, 113}, {26, 115}, {28, 117}, {30,
119}, {136, 225}, {138, 227}, {140, 229}, {142, 231}, {152, 241}, {154, 243},
{156, 245}, {158, 247}, {9, 98}, {13, 102}, {25, 114}, {29, 118}, {137, 226},
{141, 230}, {153, 242}, {157, 246}, {11, 100}, {27, 116}, {139, 228}, {155,
244}, {16, 105}, {18, 107}, {20, 109}, {22, 111}, {144, 233}, {146, 235}, {148,
237}, {150, 239}, {17, 106}, {21, 110}, {145, 234}, {149, 238}, {19, 108}, {63,
64}, {147, 236}, {191, 192}, {39, 128}, {63, 152}, {47, 136}, {55, 144}, {103,
192}, {111, 200}, {119, 208}, {127, 216}, {40, 129}, {62, 151}, {60, 149}, {58,
147}, {56, 145}, {42, 131}, {44, 133}, {46, 135}, {104, 193}, {106, 195}, {108,
197}, {110, 199}, {120, 209}, {122, 211}, {124, 213}, {126, 215}, {41, 130},
{61, 150}, {57, 146}, {45, 134}, {105, 194}, {109, 198}, {121, 210}, {125, 214},
{16, 191}, {80, 255}, {64, 239}, {59, 148}, {43, 132}, {107, 196}, {123, 212},
{1, 176}, {79, 254}, {77, 252}, {75, 250}, {73, 248}, {71, 246}, {69, 244}, {67,
242}, {65, 240}, {3, 178}, {5, 180}, {7, 182}, {9, 184}, {11, 186}, {13, 188},
{15, 190}, {2, 177}, {78, 253}, {74, 249}, {70, 245}, {66, 241}, {6, 181}, {10,
185}, {14, 189}, {4, 179}, {76, 251}, {68, 243}, {12, 187}, {48, 137}, {50,
139}, {52, 141}, {54, 143}, {112, 201}, {114, 203}, {116, 205}, {118, 207}, {49,
138}, {53, 142}, {113, 202}, {117, 206}, {8, 183}, {72, 247}, {51, 140}, {115,
204}, {17, 192}, {63, 238}, {61, 236}, {59, 234}, {57, 232}, {19, 194}, {21,
196}, {23, 198}, {25, 200}, {27, 202}, {29, 204}, {31, 206}, {49, 224}, {51,
226}, {53, 228}, {55, 230}, {18, 193}, {62, 237}, {58, 233}, {22, 197}, {26,
201}, {30, 205}, {50, 225}, {54, 229}, {20, 195}, {60, 235}, {28, 203}, {52,
227}, {64, 153}, {70, 159}, {68, 157}, {66, 155}, {96, 185}, {98, 187}, {100,
189}, {102, 191}, {65, 154}, {69, 158}, {97, 186}, {101, 190}, {24, 199}, {67,
156}, {56, 231}, {99, 188}, {71, 160}, {87, 176}, {79, 168}, {95, 184}, {72,
161}, {92, 181}, {90, 179}, {88, 177}, {78, 167}, {76, 165}, {74, 163}, {94,
183}, {73, 162}, {93, 182}, {89, 178}, {77, 166}, {32, 207}, {91, 180}, {75,
164}, {48, 223}, {33, 208}, {35, 210}, {37, 212}, {39, 214}, {41, 216}, {43,
218}, {45, 220}, {47, 222}, {34, 209}, {38, 213}, {42, 217}, {46, 221}, {36,
211}, {44, 219}, {80, 169}, {86, 175}, {84, 173}, {82, 171}, {81, 170}, {85,
174}, {40, 215}, {83, 172}, {127, 128}, {1, 264}, {81, 256}, {89, 264}, {87,
262}, {85, 260}, {83, 258}, {82, 257}, {86, 261}, {84, 259}, {88, 263}, {167,
256}, {175, 264}, {168, 257}, {170, 259}, {172, 261}, {174, 263}, {169, 258},
{173, 262}, {171, 260}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 90)(3, 179)(5, 93)(6, 182)(8, 96)(9, 185)(11, 99)(12, 188)(14, 102)(15,
191)(17, 105)(18, 194)(20, 108)(21, 197)(23, 111)(24, 200)(26, 114)(27, 203)(29,
117)(30, 206)(32, 120)(33, 209)(35, 123)(36, 212)(38, 126)(39, 215)(41, 129)(42,
218)(44, 132)(45, 221)(47, 135)(48, 224)(50, 138)(51, 227)(53, 141)(54, 230)(56,
144)(57, 233)(59, 147)(60, 236)(62, 150)(63, 239)(65, 153)(66, 242)(68, 156)(69,
245)(71, 159)(72, 248)(74, 162)(75, 251)(77, 165)(78, 254)(80, 168)(81, 257)(83,
171)(84, 260)(86, 174)(87, 263)(89, 177)(92, 180)(95, 183)(98, 186)(101,
189)(104, 192)(107, 195)(110, 198)(113, 201)(116, 204)(119, 207)(122, 210)(125,
213)(128, 216)(131, 219)(134, 222)(137, 225)(140, 228)(143, 231)(146, 234)(149,
237)(152, 240)(155, 243)(158, 246)(161, 249)(164, 252)(167, 255)(170, 258)(173,
261)(176, 264) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264)
c: (2, 176)(3, 87)(4, 262)(5, 173)(6, 84)(7, 259)(8, 170)(9, 81)(10, 256)(11,
167)(12, 78)(13, 253)(14, 164)(15, 75)(16, 250)(17, 161)(18, 72)(19, 247)(20,
158)(21, 69)(22, 244)(23, 155)(24, 66)(25, 241)(26, 152)(27, 63)(28, 238)(29,
149)(30, 60)(31, 235)(32, 146)(33, 57)(34, 232)(35, 143)(36, 54)(37, 229)(38,
140)(39, 51)(40, 226)(41, 137)(42, 48)(43, 223)(44, 134)(46, 220)(47, 131)(49,
217)(50, 128)(52, 214)(53, 125)(55, 211)(56, 122)(58, 208)(59, 119)(61, 205)(62,
116)(64, 202)(65, 113)(67, 199)(68, 110)(70, 196)(71, 107)(73, 193)(74, 104)(76,
190)(77, 101)(79, 187)(80, 98)(82, 184)(83, 95)(85, 181)(86, 92)(88, 178)(90,
264)(91, 175)(93, 261)(94, 172)(96, 258)(97, 169)(99, 255)(100, 166)(102,
252)(103, 163)(105, 249)(106, 160)(108, 246)(109, 157)(111, 243)(112, 154)(114,
240)(115, 151)(117, 237)(118, 148)(120, 234)(121, 145)(123, 231)(124, 142)(126,
228)(127, 139)(129, 225)(130, 136)(132, 222)(135, 219)(138, 216)(141, 213)(144,
210)(147, 207)(150, 204)(153, 201)(156, 198)(159, 195)(162, 192)(165, 189)(168,
186)(171, 183)(174, 180)(179, 263)(182, 260)(185, 257)(188, 254)(191, 251)(194,
248)(197, 245)(200, 242)(203, 239)(206, 236)(209, 233)(212, 230)(215, 227)(218,
224)
C4[ 264, 6 ]
264
-1 176 264 2 90
-2 1 177 3 91
-3 2 178 4 92
-4 3 179 5 93
-5 4 180 6 94
-6 5 181 7 95
-7 6 182 8 96
-8 7 183 9 97
-9 8 184 10 98
-10 11 99 9 185
-11 12 100 10 186
-12 11 187 13 101
-13 12 188 14 102
-14 13 189 15 103
-15 14 190 16 104
-16 15 191 17 105
-17 16 192 18 106
-18 17 193 19 107
-19 18 194 20 108
-20 19 195 21 109
-21 22 110 20 196
-22 23 111 21 197
-23 22 198 24 112
-24 23 199 25 113
-25 24 200 26 114
-26 25 201 27 115
-27 26 202 28 116
-28 27 203 29 117
-29 28 204 30 118
-30 29 205 31 119
-31 30 206 32 120
-32 33 121 31 207
-33 34 122 32 208
-34 33 209 35 123
-35 34 210 36 124
-36 35 211 37 125
-37 36 212 38 126
-38 37 213 39 127
-39 38 214 40 128
-40 39 215 41 129
-41 40 216 42 130
-42 41 217 43 131
-43 44 132 42 218
-44 45 133 43 219
-45 44 220 46 134
-46 45 221 47 135
-47 46 222 48 136
-48 47 223 49 137
-49 48 224 50 138
-50 49 225 51 139
-51 50 226 52 140
-52 51 227 53 141
-53 52 228 54 142
-54 55 143 53 229
-55 56 144 54 230
-56 55 231 57 145
-57 56 232 58 146
-58 57 233 59 147
-59 58 234 60 148
-60 59 235 61 149
-61 60 236 62 150
-62 61 237 63 151
-63 62 238 64 152
-64 63 239 65 153
-65 66 154 64 240
-66 67 155 65 241
-67 66 242 68 156
-68 67 243 69 157
-69 68 244 70 158
-70 69 245 71 159
-71 70 246 72 160
-72 71 247 73 161
-73 72 248 74 162
-74 73 249 75 163
-75 74 250 76 164
-76 77 165 75 251
-77 78 166 76 252
-78 77 253 79 167
-79 78 254 80 168
-80 79 255 81 169
-81 80 256 82 170
-82 81 257 83 171
-83 82 258 84 172
-84 83 259 85 173
-85 84 260 86 174
-86 85 261 87 175
-87 88 176 86 262
-88 89 177 87 263
-89 88 264 90 178
-90 1 89 91 179
-91 2 90 92 180
-92 3 91 93 181
-93 4 92 94 182
-94 5 93 95 183
-95 6 94 96 184
-96 7 95 97 185
-97 8 96 98 186
-98 99 187 9 97
-99 100 188 10 98
-100 11 99 101 189
-101 12 100 102 190
-102 13 101 103 191
-103 14 102 104 192
-104 15 103 105 193
-105 16 104 106 194
-106 17 105 107 195
-107 18 106 108 196
-108 19 107 109 197
-109 110 198 20 108
-110 111 199 21 109
-111 22 110 112 200
-112 23 111 113 201
-113 24 112 114 202
-114 25 113 115 203
-115 26 114 116 204
-116 27 115 117 205
-117 28 116 118 206
-118 29 117 119 207
-119 30 118 120 208
-120 121 209 31 119
-121 122 210 32 120
-122 33 121 123 211
-123 34 122 124 212
-124 35 123 125 213
-125 36 124 126 214
-126 37 125 127 215
-127 38 126 128 216
-128 39 127 129 217
-129 40 128 130 218
-130 41 129 131 219
-131 132 220 42 130
-132 133 221 43 131
-133 44 132 134 222
-134 45 133 135 223
-135 46 134 136 224
-136 47 135 137 225
-137 48 136 138 226
-138 49 137 139 227
-139 50 138 140 228
-140 51 139 141 229
-141 52 140 142 230
-142 143 231 53 141
-143 144 232 54 142
-144 55 143 145 233
-145 56 144 146 234
-146 57 145 147 235
-147 58 146 148 236
-148 59 147 149 237
-149 60 148 150 238
-150 61 149 151 239
-151 62 150 152 240
-152 63 151 153 241
-153 154 242 64 152
-154 155 243 65 153
-155 66 154 156 244
-156 67 155 157 245
-157 68 156 158 246
-158 69 157 159 247
-159 70 158 160 248
-160 71 159 161 249
-161 72 160 162 250
-162 73 161 163 251
-163 74 162 164 252
-164 165 253 75 163
-165 166 254 76 164
-166 77 165 167 255
-167 78 166 168 256
-168 79 167 169 257
-169 80 168 170 258
-170 81 169 171 259
-171 82 170 172 260
-172 83 171 173 261
-173 84 172 174 262
-174 85 173 175 263
-175 176 264 86 174
-176 1 177 87 175
-177 88 176 2 178
-178 89 177 3 179
-179 90 178 4 180
-180 91 179 5 181
-181 92 180 6 182
-182 93 181 7 183
-183 94 182 8 184
-184 95 183 9 185
-185 96 184 10 186
-186 11 187 97 185
-187 12 188 98 186
-188 99 187 13 189
-189 100 188 14 190
-190 101 189 15 191
-191 102 190 16 192
-192 103 191 17 193
-193 104 192 18 194
-194 105 193 19 195
-195 106 194 20 196
-196 107 195 21 197
-197 22 198 108 196
-198 23 199 109 197
-199 110 198 24 200
-200 111 199 25 201
-201 112 200 26 202
-202 113 201 27 203
-203 114 202 28 204
-204 115 203 29 205
-205 116 204 30 206
-206 117 205 31 207
-207 118 206 32 208
-208 33 209 119 207
-209 34 210 120 208
-210 121 209 35 211
-211 122 210 36 212
-212 123 211 37 213
-213 124 212 38 214
-214 125 213 39 215
-215 126 214 40 216
-216 127 215 41 217
-217 128 216 42 218
-218 129 217 43 219
-219 44 220 130 218
-220 45 221 131 219
-221 132 220 46 222
-222 133 221 47 223
-223 134 222 48 224
-224 135 223 49 225
-225 136 224 50 226
-226 137 225 51 227
-227 138 226 52 228
-228 139 227 53 229
-229 140 228 54 230
-230 55 231 141 229
-231 56 232 142 230
-232 143 231 57 233
-233 144 232 58 234
-234 145 233 59 235
-235 146 234 60 236
-236 147 235 61 237
-237 148 236 62 238
-238 149 237 63 239
-239 150 238 64 240
-240 151 239 65 241
-241 66 242 152 240
-242 67 243 153 241
-243 154 242 68 244
-244 155 243 69 245
-245 156 244 70 246
-246 157 245 71 247
-247 158 246 72 248
-248 159 247 73 249
-249 160 248 74 250
-250 161 249 75 251
-251 162 250 76 252
-252 77 253 163 251
-253 78 254 164 252
-254 165 253 79 255
-255 166 254 80 256
-256 167 255 81 257
-257 168 256 82 258
-258 169 257 83 259
-259 170 258 84 260
-260 171 259 85 261
-261 172 260 86 262
-262 173 261 87 263
-263 88 264 174 262
-264 1 89 175 263
0