C4graphGraph forms for C4 [ 264, 7 ] = C_264(1,109)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 264, 7 ] = C_264(1,109).

(I) Following is a form readable by MAGMA:

g:=Graph<264|{ {2, 3}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {1, 2}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {2, 111}, {16, 125}, {18, 127}, {128, 237}, {130, 239}, {144, 253}, {146, 255}, {1, 110}, {17, 126}, {129, 238}, {145, 254}, {3, 112}, {7, 116}, {11, 120}, {15, 124}, {131, 240}, {135, 244}, {139, 248}, {143, 252}, {4, 113}, {6, 115}, {12, 121}, {14, 123}, {132, 241}, {134, 243}, {140, 249}, {142, 251}, {5, 114}, {13, 122}, {133, 242}, {141, 250}, {8, 117}, {10, 119}, {136, 245}, {138, 247}, {9, 118}, {63, 64}, {137, 246}, {191, 192}, {19, 128}, {87, 196}, {83, 192}, {63, 172}, {59, 168}, {23, 132}, {27, 136}, {31, 140}, {51, 160}, {55, 164}, {91, 200}, {95, 204}, {115, 224}, {119, 228}, {123, 232}, {127, 236}, {20, 129}, {86, 195}, {84, 193}, {62, 171}, {60, 169}, {22, 131}, {28, 137}, {30, 139}, {52, 161}, {54, 163}, {92, 201}, {94, 203}, {116, 225}, {118, 227}, {124, 233}, {126, 235}, {21, 130}, {85, 194}, {61, 170}, {29, 138}, {53, 162}, {93, 202}, {117, 226}, {125, 234}, {4, 159}, {68, 223}, {64, 219}, {32, 187}, {36, 191}, {96, 251}, {100, 255}, {1, 156}, {90, 199}, {88, 197}, {67, 222}, {65, 220}, {58, 167}, {3, 158}, {24, 133}, {26, 135}, {33, 188}, {35, 190}, {56, 165}, {97, 252}, {99, 254}, {120, 229}, {122, 231}, {2, 157}, {89, 198}, {66, 221}, {57, 166}, {25, 134}, {34, 189}, {98, 253}, {121, 230}, {5, 160}, {87, 242}, {85, 240}, {79, 234}, {77, 232}, {71, 226}, {69, 224}, {7, 162}, {13, 168}, {15, 170}, {21, 176}, {23, 178}, {29, 184}, {31, 186}, {93, 248}, {95, 250}, {6, 161}, {86, 241}, {78, 233}, {70, 225}, {14, 169}, {22, 177}, {30, 185}, {94, 249}, {8, 163}, {88, 243}, {76, 231}, {72, 227}, {12, 167}, {24, 179}, {28, 183}, {92, 247}, {9, 164}, {89, 244}, {75, 230}, {73, 228}, {11, 166}, {25, 180}, {27, 182}, {32, 141}, {34, 143}, {48, 157}, {50, 159}, {91, 246}, {96, 205}, {98, 207}, {112, 221}, {114, 223}, {10, 165}, {90, 245}, {74, 229}, {26, 181}, {33, 142}, {49, 158}, {97, 206}, {113, 222}, {35, 144}, {39, 148}, {43, 152}, {47, 156}, {99, 208}, {103, 212}, {107, 216}, {111, 220}, {36, 145}, {38, 147}, {44, 153}, {46, 155}, {100, 209}, {102, 211}, {108, 217}, {110, 219}, {37, 146}, {45, 154}, {101, 210}, {109, 218}, {16, 171}, {84, 239}, {80, 235}, {20, 175}, {17, 172}, {83, 238}, {81, 236}, {19, 174}, {40, 149}, {42, 151}, {104, 213}, {106, 215}, {18, 173}, {82, 237}, {41, 150}, {105, 214}, {37, 192}, {63, 218}, {61, 216}, {39, 194}, {45, 200}, {47, 202}, {53, 208}, {55, 210}, {38, 193}, {62, 217}, {46, 201}, {54, 209}, {40, 195}, {60, 215}, {44, 199}, {56, 211}, {41, 196}, {82, 191}, {80, 189}, {66, 175}, {64, 173}, {59, 214}, {57, 212}, {43, 198}, {42, 197}, {81, 190}, {65, 174}, {58, 213}, {67, 176}, {79, 188}, {75, 184}, {71, 180}, {68, 177}, {78, 187}, {76, 185}, {70, 179}, {69, 178}, {77, 186}, {48, 203}, {52, 207}, {49, 204}, {74, 183}, {72, 181}, {51, 206}, {50, 205}, {73, 182}, {127, 128}, {1, 264}, {101, 256}, {103, 258}, {109, 264}, {102, 257}, {104, 259}, {108, 263}, {105, 260}, {107, 262}, {106, 261}, {147, 256}, {151, 260}, {155, 264}, {148, 257}, {150, 259}, {149, 258}, {152, 261}, {154, 263}, {153, 262}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 156)(3, 47)(4, 202)(5, 93)(6, 248)(7, 139)(8, 30)(9, 185)(10, 76)(11, 231)(12, 122)(14, 168)(15, 59)(16, 214)(17, 105)(18, 260)(19, 151)(20, 42)(21, 197)(22, 88)(23, 243)(24, 134)(26, 180)(27, 71)(28, 226)(29, 117)(31, 163)(32, 54)(33, 209)(34, 100)(35, 255)(36, 146)(38, 192)(39, 83)(40, 238)(41, 129)(43, 175)(44, 66)(45, 221)(46, 112)(48, 158)(50, 204)(51, 95)(52, 250)(53, 141)(55, 187)(56, 78)(57, 233)(58, 124)(60, 170)(62, 216)(63, 107)(64, 262)(65, 153)(67, 199)(68, 90)(69, 245)(70, 136)(72, 182)(74, 228)(75, 119)(77, 165)(79, 211)(80, 102)(81, 257)(82, 148)(84, 194)(86, 240)(87, 131)(89, 177)(91, 223)(92, 114)(94, 160)(96, 206)(98, 252)(99, 143)(101, 189)(103, 235)(104, 126)(106, 172)(108, 218)(110, 264)(111, 155)(113, 201)(115, 247)(116, 138)(118, 184)(120, 230)(123, 167)(125, 213)(127, 259)(128, 150)(130, 196)(132, 242)(135, 179)(137, 225)(140, 162)(142, 208)(144, 254)(147, 191)(149, 237)(152, 174)(154, 220)(159, 203)(161, 249)(164, 186)(166, 232)(171, 215)(173, 261)(176, 198)(178, 244)(183, 227)(188, 210)(190, 256)(195, 239)(200, 222)(207, 251)(212, 234)(219, 263)(224, 246)(236, 258)
b: (2, 110)(3, 219)(4, 64)(5, 173)(6, 18)(7, 127)(8, 236)(9, 81)(10, 190)(11, 35)(12, 144)(13, 253)(14, 98)(15, 207)(16, 52)(17, 161)(19, 115)(20, 224)(21, 69)(22, 178)(24, 132)(25, 241)(26, 86)(27, 195)(28, 40)(29, 149)(30, 258)(31, 103)(32, 212)(33, 57)(34, 166)(36, 120)(37, 229)(38, 74)(39, 183)(41, 137)(42, 246)(43, 91)(44, 200)(46, 154)(47, 263)(48, 108)(49, 217)(50, 62)(51, 171)(53, 125)(54, 234)(55, 79)(56, 188)(58, 142)(59, 251)(60, 96)(61, 205)(63, 159)(65, 113)(66, 222)(68, 176)(70, 130)(71, 239)(72, 84)(73, 193)(75, 147)(76, 256)(77, 101)(78, 210)(80, 164)(82, 118)(83, 227)(85, 181)(87, 135)(88, 244)(90, 198)(92, 152)(93, 261)(94, 106)(95, 215)(97, 169)(99, 123)(100, 232)(102, 186)(104, 140)(105, 249)(107, 203)(109, 157)(112, 220)(114, 174)(116, 128)(117, 237)(119, 191)(121, 145)(122, 254)(124, 208)(126, 162)(129, 225)(131, 179)(134, 242)(136, 196)(138, 150)(139, 259)(141, 213)(143, 167)(146, 230)(148, 184)(151, 247)(153, 201)(156, 264)(158, 218)(160, 172)(163, 235)(165, 189)(168, 252)(170, 206)(175, 223)(180, 240)(182, 194)(185, 257)(187, 211)(192, 228)(197, 245)(202, 262)(204, 216)(209, 233)(214, 250)(226, 238)(231, 255)(248, 260)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 264, 7 ]
264
-1 110 264 2 156
-2 1 111 3 157
-3 2 112 4 158
-4 3 113 5 159
-5 4 114 6 160
-6 5 115 7 161
-7 6 116 8 162
-8 7 117 9 163
-9 8 118 10 164
-10 11 165 9 119
-11 12 166 10 120
-12 11 121 13 167
-13 12 122 14 168
-14 13 123 15 169
-15 14 124 16 170
-16 15 125 17 171
-17 16 126 18 172
-18 17 127 19 173
-19 18 128 20 174
-20 19 129 21 175
-21 22 176 20 130
-22 23 177 21 131
-23 22 132 24 178
-24 23 133 25 179
-25 24 134 26 180
-26 25 135 27 181
-27 26 136 28 182
-28 27 137 29 183
-29 28 138 30 184
-30 29 139 31 185
-31 30 140 32 186
-32 33 187 31 141
-33 34 188 32 142
-34 33 143 35 189
-35 34 144 36 190
-36 35 145 37 191
-37 36 146 38 192
-38 37 147 39 193
-39 38 148 40 194
-40 39 149 41 195
-41 40 150 42 196
-42 41 151 43 197
-43 44 198 42 152
-44 45 199 43 153
-45 44 154 46 200
-46 45 155 47 201
-47 46 156 48 202
-48 47 157 49 203
-49 48 158 50 204
-50 49 159 51 205
-51 50 160 52 206
-52 51 161 53 207
-53 52 162 54 208
-54 55 209 53 163
-55 56 210 54 164
-56 55 165 57 211
-57 56 166 58 212
-58 57 167 59 213
-59 58 168 60 214
-60 59 169 61 215
-61 60 170 62 216
-62 61 171 63 217
-63 62 172 64 218
-64 63 173 65 219
-65 66 220 64 174
-66 67 221 65 175
-67 66 176 68 222
-68 67 177 69 223
-69 68 178 70 224
-70 69 179 71 225
-71 70 180 72 226
-72 71 181 73 227
-73 72 182 74 228
-74 73 183 75 229
-75 74 184 76 230
-76 77 231 75 185
-77 78 232 76 186
-78 77 187 79 233
-79 78 188 80 234
-80 79 189 81 235
-81 80 190 82 236
-82 81 191 83 237
-83 82 192 84 238
-84 83 193 85 239
-85 84 194 86 240
-86 85 195 87 241
-87 88 242 86 196
-88 89 243 87 197
-89 88 198 90 244
-90 89 199 91 245
-91 90 200 92 246
-92 91 201 93 247
-93 92 202 94 248
-94 93 203 95 249
-95 94 204 96 250
-96 95 205 97 251
-97 96 206 98 252
-98 99 253 97 207
-99 100 254 98 208
-100 99 209 101 255
-101 100 210 102 256
-102 101 211 103 257
-103 102 212 104 258
-104 103 213 105 259
-105 104 214 106 260
-106 105 215 107 261
-107 106 216 108 262
-108 107 217 109 263
-109 110 264 108 218
-110 1 111 109 219
-111 110 220 2 112
-112 111 221 3 113
-113 112 222 4 114
-114 113 223 5 115
-115 114 224 6 116
-116 115 225 7 117
-117 116 226 8 118
-118 117 227 9 119
-119 118 228 10 120
-120 11 121 119 229
-121 12 122 120 230
-122 121 231 13 123
-123 122 232 14 124
-124 123 233 15 125
-125 124 234 16 126
-126 125 235 17 127
-127 126 236 18 128
-128 127 237 19 129
-129 128 238 20 130
-130 129 239 21 131
-131 22 132 130 240
-132 23 133 131 241
-133 132 242 24 134
-134 133 243 25 135
-135 134 244 26 136
-136 135 245 27 137
-137 136 246 28 138
-138 137 247 29 139
-139 138 248 30 140
-140 139 249 31 141
-141 140 250 32 142
-142 33 143 141 251
-143 34 144 142 252
-144 143 253 35 145
-145 144 254 36 146
-146 145 255 37 147
-147 146 256 38 148
-148 147 257 39 149
-149 148 258 40 150
-150 149 259 41 151
-151 150 260 42 152
-152 151 261 43 153
-153 44 154 152 262
-154 45 155 153 263
-155 154 264 46 156
-156 1 155 47 157
-157 2 156 48 158
-158 3 157 49 159
-159 4 158 50 160
-160 5 159 51 161
-161 6 160 52 162
-162 7 161 53 163
-163 8 162 54 164
-164 55 165 9 163
-165 56 166 10 164
-166 11 165 57 167
-167 12 166 58 168
-168 13 167 59 169
-169 14 168 60 170
-170 15 169 61 171
-171 16 170 62 172
-172 17 171 63 173
-173 18 172 64 174
-174 19 173 65 175
-175 66 176 20 174
-176 67 177 21 175
-177 22 176 68 178
-178 23 177 69 179
-179 24 178 70 180
-180 25 179 71 181
-181 26 180 72 182
-182 27 181 73 183
-183 28 182 74 184
-184 29 183 75 185
-185 30 184 76 186
-186 77 187 31 185
-187 78 188 32 186
-188 33 187 79 189
-189 34 188 80 190
-190 35 189 81 191
-191 36 190 82 192
-192 37 191 83 193
-193 38 192 84 194
-194 39 193 85 195
-195 40 194 86 196
-196 41 195 87 197
-197 88 198 42 196
-198 89 199 43 197
-199 44 198 90 200
-200 45 199 91 201
-201 46 200 92 202
-202 47 201 93 203
-203 48 202 94 204
-204 49 203 95 205
-205 50 204 96 206
-206 51 205 97 207
-207 52 206 98 208
-208 99 209 53 207
-209 100 210 54 208
-210 55 209 101 211
-211 56 210 102 212
-212 57 211 103 213
-213 58 212 104 214
-214 59 213 105 215
-215 60 214 106 216
-216 61 215 107 217
-217 62 216 108 218
-218 63 217 109 219
-219 110 220 64 218
-220 111 221 65 219
-221 66 220 112 222
-222 67 221 113 223
-223 68 222 114 224
-224 69 223 115 225
-225 70 224 116 226
-226 71 225 117 227
-227 72 226 118 228
-228 73 227 119 229
-229 74 228 120 230
-230 121 231 75 229
-231 122 232 76 230
-232 77 231 123 233
-233 78 232 124 234
-234 79 233 125 235
-235 80 234 126 236
-236 81 235 127 237
-237 82 236 128 238
-238 83 237 129 239
-239 84 238 130 240
-240 85 239 131 241
-241 132 242 86 240
-242 133 243 87 241
-243 88 242 134 244
-244 89 243 135 245
-245 90 244 136 246
-246 91 245 137 247
-247 92 246 138 248
-248 93 247 139 249
-249 94 248 140 250
-250 95 249 141 251
-251 96 250 142 252
-252 143 253 97 251
-253 144 254 98 252
-254 99 253 145 255
-255 100 254 146 256
-256 101 255 147 257
-257 102 256 148 258
-258 103 257 149 259
-259 104 258 150 260
-260 105 259 151 261
-261 106 260 152 262
-262 107 261 153 263
-263 154 264 108 262
-264 1 155 109 263
0

**************