[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 264, 8 ] =
{4,4}_[22,6].
(I) Following is a form readable by MAGMA:
g:=Graph<264|{ {2, 3}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254,
255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243},
{240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228,
229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217},
{214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202,
203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191},
{188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {84, 85}, {82, 83},
{80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67},
{64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5},
{6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22,
23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38,
39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {86, 87}, {88,
89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103},
{104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116,
117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129},
{130, 131}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144,
145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157},
{158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170,
171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {1, 2}, {261, 262}, {257,
258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234},
{229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205,
206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182},
{85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58},
{53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30},
{33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {89, 90}, {93, 94}, {97, 98},
{101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125,
126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150},
{153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177,
178}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219,
220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {83, 84}, {75,
76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43,
44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139,
140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {7, 8}, {263, 264}, {247,
248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {71, 72}, {55, 56}, {23,
24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167,
168}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143,
144}, {175, 176}, {128, 174}, {129, 175}, {130, 176}, {131, 177}, {132, 178},
{31, 32}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {191, 192}, {1, 133}, {83,
215}, {82, 214}, {81, 213}, {80, 212}, {75, 207}, {74, 206}, {73, 205}, {72,
204}, {67, 199}, {66, 198}, {65, 197}, {64, 196}, {59, 191}, {58, 190}, {57,
189}, {56, 188}, {51, 183}, {2, 134}, {3, 135}, {8, 140}, {9, 141}, {10, 142},
{11, 143}, {16, 148}, {17, 149}, {18, 150}, {19, 151}, {24, 156}, {25, 157},
{26, 158}, {27, 159}, {32, 164}, {33, 165}, {34, 166}, {35, 167}, {40, 172},
{41, 173}, {42, 174}, {43, 175}, {48, 180}, {49, 181}, {50, 182}, {88, 220},
{89, 221}, {90, 222}, {91, 223}, {96, 228}, {97, 229}, {98, 230}, {99, 231},
{104, 236}, {105, 237}, {106, 238}, {107, 239}, {112, 244}, {113, 245}, {114,
246}, {115, 247}, {120, 252}, {121, 253}, {122, 254}, {123, 255}, {1, 132}, {4,
136}, {85, 217}, {84, 216}, {71, 203}, {70, 202}, {69, 201}, {68, 200}, {55,
187}, {54, 186}, {53, 185}, {52, 184}, {5, 137}, {6, 138}, {7, 139}, {20, 152},
{21, 153}, {22, 154}, {23, 155}, {36, 168}, {37, 169}, {38, 170}, {39, 171},
{86, 218}, {87, 219}, {100, 232}, {101, 233}, {102, 234}, {103, 235}, {116,
248}, {117, 249}, {118, 250}, {119, 251}, {12, 144}, {79, 211}, {78, 210}, {77,
209}, {76, 208}, {13, 145}, {14, 146}, {15, 147}, {44, 176}, {45, 177}, {46,
178}, {47, 179}, {108, 240}, {109, 241}, {110, 242}, {111, 243}, {1, 179}, {77,
255}, {76, 254}, {73, 251}, {72, 250}, {69, 247}, {68, 246}, {65, 243}, {64,
242}, {4, 182}, {5, 183}, {8, 186}, {9, 187}, {12, 190}, {13, 191}, {2, 180},
{75, 253}, {74, 252}, {67, 245}, {66, 244}, {3, 181}, {10, 188}, {11, 189}, {28,
160}, {29, 161}, {30, 162}, {31, 163}, {92, 224}, {93, 225}, {94, 226}, {95,
227}, {6, 184}, {71, 249}, {70, 248}, {7, 185}, {14, 192}, {63, 241}, {62, 240},
{15, 193}, {30, 208}, {31, 209}, {46, 224}, {47, 225}, {16, 194}, {61, 239},
{60, 238}, {57, 235}, {56, 234}, {53, 231}, {52, 230}, {17, 195}, {20, 198},
{21, 199}, {24, 202}, {25, 203}, {28, 206}, {29, 207}, {48, 226}, {49, 227},
{87, 133}, {90, 136}, {91, 137}, {94, 140}, {95, 141}, {114, 160}, {115, 161},
{118, 164}, {119, 165}, {122, 168}, {123, 169}, {126, 172}, {127, 173}, {18,
196}, {59, 237}, {58, 236}, {51, 229}, {19, 197}, {26, 204}, {27, 205}, {50,
228}, {92, 138}, {93, 139}, {116, 162}, {117, 163}, {124, 170}, {125, 171}, {22,
200}, {55, 233}, {54, 232}, {23, 201}, {88, 134}, {89, 135}, {120, 166}, {121,
167}, {96, 142}, {97, 143}, {112, 158}, {113, 159}, {32, 210}, {33, 211}, {36,
214}, {37, 215}, {40, 218}, {41, 219}, {44, 222}, {45, 223}, {98, 144}, {99,
145}, {102, 148}, {103, 149}, {106, 152}, {107, 153}, {110, 156}, {111, 157},
{34, 212}, {35, 213}, {42, 220}, {43, 221}, {100, 146}, {101, 147}, {108, 154},
{109, 155}, {60, 192}, {63, 195}, {62, 194}, {61, 193}, {38, 216}, {39, 217},
{104, 150}, {105, 151}, {127, 128}, {78, 256}, {79, 257}, {80, 258}, {85, 263},
{84, 262}, {81, 259}, {82, 260}, {83, 261}, {86, 264}, {124, 256}, {125, 257},
{126, 258}, {127, 259}, {128, 260}, {129, 261}, {130, 262}, {131, 263}, {132,
264}, {133, 264}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132)(133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,
244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260, 261, 262, 263, 264) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 132)(3, 131)(4, 130)(5, 129)(6, 128)(7, 127)(8, 126)(9, 125)(10, 124)(11,
123)(12, 122)(13, 121)(14, 120)(15, 119)(16, 118)(17, 117)(18, 116)(19, 115)(20,
114)(21, 113)(22, 112)(23, 111)(24, 110)(25, 109)(26, 108)(27, 107)(28, 106)(29,
105)(30, 104)(31, 103)(32, 102)(33, 101)(34, 100)(35, 99)(36, 98)(37, 97)(38,
96)(39, 95)(40, 94)(41, 93)(42, 92)(43, 91)(44, 90)(45, 89)(46, 88)(47, 87)(48,
86)(49, 85)(50, 84)(51, 83)(52, 82)(53, 81)(54, 80)(55, 79)(56, 78)(57, 77)(58,
76)(59, 75)(60, 74)(61, 73)(62, 72)(63, 71)(64, 70)(65, 69)(66, 68)(133,
179)(134, 178)(135, 177)(136, 176)(137, 175)(138, 174)(139, 173)(140, 172)(141,
171)(142, 170)(143, 169)(144, 168)(145, 167)(146, 166)(147, 165)(148, 164)(149,
163)(150, 162)(151, 161)(152, 160)(153, 159)(154, 158)(155, 157)(180, 264)(181,
263)(182, 262)(183, 261)(184, 260)(185, 259)(186, 258)(187, 257)(188, 256)(189,
255)(190, 254)(191, 253)(192, 252)(193, 251)(194, 250)(195, 249)(196, 248)(197,
247)(198, 246)(199, 245)(200, 244)(201, 243)(202, 242)(203, 241)(204, 240)(205,
239)(206, 238)(207, 237)(208, 236)(209, 235)(210, 234)(211, 233)(212, 232)(213,
231)(214, 230)(215, 229)(216, 228)(217, 227)(218, 226)(219, 225)(220, 224)(221,
223)
c: (2, 179)(3, 47)(4, 225)(5, 93)(6, 139)(8, 185)(9, 53)(10, 231)(11, 99)(12,
145)(14, 191)(15, 59)(16, 237)(17, 105)(18, 151)(20, 197)(21, 65)(22, 243)(23,
111)(24, 157)(26, 203)(27, 71)(28, 249)(29, 117)(30, 163)(32, 209)(33, 77)(34,
255)(35, 123)(36, 169)(38, 215)(39, 83)(40, 261)(41, 129)(42, 175)(44, 221)(45,
89)(46, 135)(48, 181)(50, 227)(51, 95)(52, 141)(54, 187)(56, 233)(57, 101)(58,
147)(60, 193)(62, 239)(63, 107)(64, 153)(66, 199)(68, 245)(69, 113)(70, 159)(72,
205)(74, 251)(75, 119)(76, 165)(78, 211)(80, 257)(81, 125)(82, 171)(84, 217)(86,
263)(87, 131)(88, 177)(90, 223)(92, 137)(94, 183)(96, 229)(98, 143)(100,
189)(102, 235)(104, 149)(106, 195)(108, 241)(110, 155)(112, 201)(114, 247)(116,
161)(118, 207)(120, 253)(122, 167)(124, 213)(126, 259)(128, 173)(130, 219)(132,
133)(134, 178)(136, 224)(140, 184)(142, 230)(146, 190)(148, 236)(152, 196)(154,
242)(158, 202)(160, 248)(164, 208)(166, 254)(170, 214)(172, 260)(176, 220)(182,
226)(188, 232)(194, 238)(200, 244)(206, 250)(212, 256)(218, 262)
C4[ 264, 8 ]
264
-1 132 133 2 179
-2 1 134 3 180
-3 2 135 4 181
-4 3 136 5 182
-5 4 137 6 183
-6 5 138 7 184
-7 6 139 8 185
-8 7 140 9 186
-9 187 8 141 10
-10 11 188 9 142
-11 143 12 189 10
-12 11 144 13 190
-13 12 145 14 191
-14 13 146 15 192
-15 14 147 16 193
-16 15 148 17 194
-17 16 149 18 195
-18 17 150 19 196
-19 18 151 20 197
-20 198 19 152 21
-21 22 199 20 153
-22 154 23 200 21
-23 22 155 24 201
-24 23 156 25 202
-25 24 157 26 203
-26 25 158 27 204
-27 26 159 28 205
-28 27 160 29 206
-29 28 161 30 207
-30 29 162 31 208
-31 209 30 163 32
-32 33 210 31 164
-33 165 34 211 32
-34 33 166 35 212
-35 34 167 36 213
-36 35 168 37 214
-37 36 169 38 215
-38 37 170 39 216
-39 38 171 40 217
-40 39 172 41 218
-41 40 173 42 219
-42 220 41 174 43
-43 44 221 42 175
-44 176 45 222 43
-45 44 177 46 223
-46 45 178 47 224
-47 46 179 48 225
-48 47 180 49 226
-49 48 181 50 227
-50 49 182 51 228
-51 50 183 52 229
-52 51 184 53 230
-53 231 52 185 54
-54 55 232 53 186
-55 187 56 233 54
-56 55 188 57 234
-57 56 189 58 235
-58 57 190 59 236
-59 58 191 60 237
-60 59 192 61 238
-61 60 193 62 239
-62 61 194 63 240
-63 62 195 64 241
-64 242 63 196 65
-65 66 243 64 197
-66 198 67 244 65
-67 66 199 68 245
-68 67 200 69 246
-69 68 201 70 247
-70 69 202 71 248
-71 70 203 72 249
-72 71 204 73 250
-73 72 205 74 251
-74 73 206 75 252
-75 253 74 207 76
-76 77 254 75 208
-77 209 78 255 76
-78 77 210 79 256
-79 78 211 80 257
-80 79 212 81 258
-81 80 213 82 259
-82 81 214 83 260
-83 82 215 84 261
-84 83 216 85 262
-85 84 217 86 263
-86 264 85 218 87
-87 88 133 86 219
-88 220 89 134 87
-89 88 221 90 135
-90 89 222 91 136
-91 90 223 92 137
-92 91 224 93 138
-93 92 225 94 139
-94 93 226 95 140
-95 94 227 96 141
-96 95 228 97 142
-97 143 96 229 98
-98 99 144 97 230
-99 231 100 145 98
-100 99 232 101 146
-101 100 233 102 147
-102 101 234 103 148
-103 102 235 104 149
-104 103 236 105 150
-105 104 237 106 151
-106 105 238 107 152
-107 106 239 108 153
-108 154 107 240 109
-109 110 155 108 241
-110 242 111 156 109
-111 110 243 112 157
-112 111 244 113 158
-113 112 245 114 159
-114 113 246 115 160
-115 114 247 116 161
-116 115 248 117 162
-117 116 249 118 163
-118 117 250 119 164
-119 165 118 251 120
-120 121 166 119 252
-121 253 122 167 120
-122 121 254 123 168
-123 122 255 124 169
-124 123 256 125 170
-125 124 257 126 171
-126 125 258 127 172
-127 126 259 128 173
-128 127 260 129 174
-129 128 261 130 175
-130 176 129 262 131
-131 132 177 130 263
-132 264 1 178 131
-133 264 1 134 87
-134 88 133 2 135
-135 89 134 3 136
-136 90 135 4 137
-137 91 136 5 138
-138 92 137 6 139
-139 93 138 7 140
-140 94 139 8 141
-141 95 140 9 142
-142 143 96 141 10
-143 11 144 97 142
-144 143 12 145 98
-145 99 144 13 146
-146 100 145 14 147
-147 101 146 15 148
-148 102 147 16 149
-149 103 148 17 150
-150 104 149 18 151
-151 105 150 19 152
-152 106 151 20 153
-153 154 107 152 21
-154 22 155 108 153
-155 154 23 156 109
-156 110 155 24 157
-157 111 156 25 158
-158 112 157 26 159
-159 113 158 27 160
-160 114 159 28 161
-161 115 160 29 162
-162 116 161 30 163
-163 117 162 31 164
-164 165 118 163 32
-165 33 166 119 164
-166 165 34 167 120
-167 121 166 35 168
-168 122 167 36 169
-169 123 168 37 170
-170 124 169 38 171
-171 125 170 39 172
-172 126 171 40 173
-173 127 172 41 174
-174 128 173 42 175
-175 176 129 174 43
-176 44 177 130 175
-177 176 45 178 131
-178 132 177 46 179
-179 1 178 47 180
-180 2 179 48 181
-181 3 180 49 182
-182 4 181 50 183
-183 5 182 51 184
-184 6 183 52 185
-185 7 184 53 186
-186 187 8 185 54
-187 55 188 9 186
-188 187 56 189 10
-189 11 188 57 190
-190 12 189 58 191
-191 13 190 59 192
-192 14 191 60 193
-193 15 192 61 194
-194 16 193 62 195
-195 17 194 63 196
-196 18 195 64 197
-197 198 19 196 65
-198 66 199 20 197
-199 198 67 200 21
-200 22 199 68 201
-201 23 200 69 202
-202 24 201 70 203
-203 25 202 71 204
-204 26 203 72 205
-205 27 204 73 206
-206 28 205 74 207
-207 29 206 75 208
-208 209 30 207 76
-209 77 210 31 208
-210 209 78 211 32
-211 33 210 79 212
-212 34 211 80 213
-213 35 212 81 214
-214 36 213 82 215
-215 37 214 83 216
-216 38 215 84 217
-217 39 216 85 218
-218 40 217 86 219
-219 220 41 218 87
-220 88 221 42 219
-221 220 89 222 43
-222 44 221 90 223
-223 45 222 91 224
-224 46 223 92 225
-225 47 224 93 226
-226 48 225 94 227
-227 49 226 95 228
-228 50 227 96 229
-229 51 228 97 230
-230 231 52 229 98
-231 99 232 53 230
-232 231 100 233 54
-233 55 232 101 234
-234 56 233 102 235
-235 57 234 103 236
-236 58 235 104 237
-237 59 236 105 238
-238 60 237 106 239
-239 61 238 107 240
-240 62 239 108 241
-241 242 63 240 109
-242 110 243 64 241
-243 242 111 244 65
-244 66 243 112 245
-245 67 244 113 246
-246 68 245 114 247
-247 69 246 115 248
-248 70 247 116 249
-249 71 248 117 250
-250 72 249 118 251
-251 73 250 119 252
-252 253 74 251 120
-253 121 254 75 252
-254 253 122 255 76
-255 77 254 123 256
-256 78 255 124 257
-257 79 256 125 258
-258 80 257 126 259
-259 81 258 127 260
-260 82 259 128 261
-261 83 260 129 262
-262 84 261 130 263
-263 264 85 262 131
-264 132 133 86 263
0