C4graphGraph forms for C4 [ 264, 12 ] = R_132(101,34)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 264, 12 ] = R_132(101,34).

(I) Following is a form readable by MAGMA:

g:=Graph<264|{ {2, 3}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {1, 2}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {3, 4}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {79, 80}, {47, 48}, {111, 112}, {128, 159}, {129, 160}, {131, 162}, {133, 167}, {221, 255}, {220, 254}, {217, 251}, {216, 250}, {213, 247}, {212, 246}, {209, 243}, {208, 242}, {205, 239}, {204, 238}, {201, 235}, {200, 234}, {197, 231}, {196, 230}, {193, 227}, {192, 226}, {136, 170}, {137, 171}, {140, 174}, {141, 175}, {144, 178}, {145, 179}, {148, 182}, {149, 183}, {152, 186}, {153, 187}, {156, 190}, {157, 191}, {130, 161}, {138, 172}, {219, 253}, {218, 252}, {211, 245}, {210, 244}, {203, 237}, {202, 236}, {195, 229}, {194, 228}, {139, 173}, {146, 180}, {147, 181}, {154, 188}, {155, 189}, {132, 163}, {134, 168}, {215, 249}, {214, 248}, {199, 233}, {198, 232}, {135, 169}, {150, 184}, {151, 185}, {142, 176}, {207, 241}, {206, 240}, {143, 177}, {31, 32}, {95, 96}, {158, 192}, {191, 225}, {190, 224}, {159, 193}, {133, 231}, {189, 223}, {188, 222}, {185, 219}, {184, 218}, {181, 215}, {180, 214}, {177, 211}, {176, 210}, {173, 207}, {172, 206}, {169, 203}, {168, 202}, {136, 234}, {137, 235}, {140, 238}, {141, 239}, {144, 242}, {145, 243}, {148, 246}, {149, 247}, {152, 250}, {153, 251}, {156, 254}, {157, 255}, {160, 194}, {161, 195}, {164, 198}, {165, 199}, {138, 236}, {187, 221}, {186, 220}, {179, 213}, {178, 212}, {171, 205}, {170, 204}, {139, 237}, {146, 244}, {147, 245}, {154, 252}, {155, 253}, {162, 196}, {163, 197}, {134, 232}, {183, 217}, {182, 216}, {167, 201}, {166, 200}, {135, 233}, {150, 248}, {151, 249}, {142, 240}, {175, 209}, {174, 208}, {143, 241}, {63, 64}, {1, 133}, {83, 215}, {82, 214}, {81, 213}, {80, 212}, {75, 207}, {74, 206}, {73, 205}, {72, 204}, {67, 199}, {66, 198}, {65, 197}, {64, 196}, {59, 191}, {58, 190}, {57, 189}, {56, 188}, {2, 134}, {3, 135}, {8, 140}, {9, 141}, {10, 142}, {11, 143}, {16, 148}, {17, 149}, {18, 150}, {19, 151}, {24, 156}, {25, 157}, {26, 158}, {27, 159}, {32, 164}, {33, 165}, {34, 166}, {35, 167}, {40, 172}, {41, 173}, {42, 174}, {43, 175}, {48, 180}, {49, 181}, {50, 182}, {51, 183}, {88, 220}, {89, 221}, {90, 222}, {91, 223}, {96, 228}, {97, 229}, {98, 230}, {99, 231}, {104, 236}, {105, 237}, {106, 238}, {107, 239}, {112, 244}, {113, 245}, {114, 246}, {115, 247}, {120, 252}, {121, 253}, {122, 254}, {123, 255}, {1, 132}, {4, 136}, {86, 218}, {85, 217}, {84, 216}, {71, 203}, {70, 202}, {69, 201}, {68, 200}, {55, 187}, {54, 186}, {53, 185}, {5, 137}, {6, 138}, {7, 139}, {20, 152}, {21, 153}, {22, 154}, {23, 155}, {36, 168}, {37, 169}, {38, 170}, {39, 171}, {52, 184}, {87, 219}, {100, 232}, {101, 233}, {102, 234}, {103, 235}, {116, 248}, {117, 249}, {118, 250}, {119, 251}, {12, 144}, {79, 211}, {78, 210}, {77, 209}, {76, 208}, {13, 145}, {14, 146}, {15, 147}, {44, 176}, {45, 177}, {46, 178}, {47, 179}, {108, 240}, {109, 241}, {110, 242}, {111, 243}, {4, 167}, {84, 247}, {80, 243}, {76, 239}, {72, 235}, {68, 231}, {64, 227}, {8, 171}, {12, 175}, {16, 179}, {20, 183}, {24, 187}, {28, 191}, {88, 251}, {92, 255}, {1, 164}, {83, 246}, {81, 244}, {75, 238}, {73, 236}, {67, 230}, {65, 228}, {3, 166}, {9, 172}, {11, 174}, {17, 180}, {19, 182}, {25, 188}, {27, 190}, {89, 252}, {91, 254}, {2, 165}, {82, 245}, {74, 237}, {66, 229}, {10, 173}, {18, 181}, {26, 189}, {90, 253}, {5, 168}, {85, 248}, {71, 234}, {69, 232}, {7, 170}, {21, 184}, {23, 186}, {87, 250}, {6, 169}, {86, 249}, {70, 233}, {22, 185}, {28, 160}, {29, 161}, {30, 162}, {31, 163}, {92, 224}, {93, 225}, {94, 226}, {95, 227}, {13, 176}, {79, 242}, {77, 240}, {15, 178}, {14, 177}, {78, 241}, {29, 192}, {63, 226}, {61, 224}, {31, 194}, {30, 193}, {62, 225}, {103, 134}, {105, 136}, {107, 138}, {109, 140}, {111, 142}, {113, 144}, {115, 146}, {117, 148}, {119, 150}, {121, 152}, {123, 154}, {125, 156}, {127, 158}, {32, 195}, {60, 223}, {56, 219}, {36, 199}, {40, 203}, {44, 207}, {48, 211}, {52, 215}, {102, 133}, {106, 137}, {110, 141}, {114, 145}, {118, 149}, {122, 153}, {126, 157}, {33, 196}, {59, 222}, {57, 220}, {35, 198}, {41, 204}, {43, 206}, {49, 212}, {51, 214}, {34, 197}, {58, 221}, {42, 205}, {50, 213}, {108, 139}, {116, 147}, {124, 155}, {37, 200}, {55, 218}, {53, 216}, {39, 202}, {38, 201}, {54, 217}, {104, 135}, {120, 151}, {60, 192}, {63, 195}, {62, 194}, {61, 193}, {45, 208}, {47, 210}, {46, 209}, {112, 143}, {127, 128}, {93, 256}, {95, 258}, {94, 257}, {96, 259}, {100, 263}, {97, 260}, {99, 262}, {98, 261}, {101, 264}, {124, 256}, {125, 257}, {126, 258}, {127, 259}, {128, 260}, {129, 261}, {130, 262}, {131, 263}, {132, 264}, {158, 256}, {159, 257}, {160, 258}, {165, 263}, {161, 259}, {164, 262}, {162, 260}, {163, 261}, {166, 264}, {222, 256}, {223, 257}, {224, 258}, {229, 263}, {228, 262}, {225, 259}, {226, 260}, {227, 261}, {230, 264} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 133)(3, 167)(5, 136)(6, 170)(8, 139)(9, 173)(11, 142)(12, 176)(14, 145)(15, 179)(17, 148)(18, 182)(20, 151)(21, 185)(23, 154)(24, 188)(26, 157)(27, 191)(29, 160)(30, 194)(32, 163)(33, 197)(35, 166)(36, 200)(38, 169)(39, 203)(41, 172)(42, 206)(44, 175)(45, 209)(47, 178)(48, 212)(50, 181)(51, 215)(53, 184)(54, 218)(56, 187)(57, 221)(59, 190)(60, 224)(62, 193)(63, 227)(65, 196)(66, 230)(68, 199)(69, 233)(71, 202)(72, 236)(74, 205)(75, 239)(77, 208)(78, 242)(80, 211)(81, 245)(83, 214)(84, 248)(86, 217)(87, 251)(89, 220)(90, 254)(92, 223)(93, 257)(95, 226)(96, 260)(98, 229)(99, 263)(101, 232)(102, 134)(104, 235)(105, 137)(107, 238)(108, 140)(110, 241)(111, 143)(113, 244)(114, 146)(116, 247)(117, 149)(119, 250)(120, 152)(122, 253)(123, 155)(125, 256)(126, 158)(128, 259)(129, 161)(131, 262)(132, 164)(135, 201)(138, 204)(141, 207)(144, 210)(147, 213)(150, 216)(153, 219)(156, 222)(159, 225)(162, 228)(165, 231)(168, 234)(171, 237)(174, 240)(177, 243)(180, 246)(183, 249)(186, 252)(189, 255)(192, 258)(195, 261)(198, 264)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132)(133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264)
c: (2, 132)(3, 131)(4, 130)(5, 129)(6, 128)(7, 127)(8, 126)(9, 125)(10, 124)(11, 123)(12, 122)(13, 121)(14, 120)(15, 119)(16, 118)(17, 117)(18, 116)(19, 115)(20, 114)(21, 113)(22, 112)(23, 111)(24, 110)(25, 109)(26, 108)(27, 107)(28, 106)(29, 105)(30, 104)(31, 103)(32, 102)(33, 101)(34, 100)(35, 99)(36, 98)(37, 97)(38, 96)(39, 95)(40, 94)(41, 93)(42, 92)(43, 91)(44, 90)(45, 89)(46, 88)(47, 87)(48, 86)(49, 85)(50, 84)(51, 83)(52, 82)(53, 81)(54, 80)(55, 79)(56, 78)(57, 77)(58, 76)(59, 75)(60, 74)(61, 73)(62, 72)(63, 71)(64, 70)(65, 69)(66, 68)(133, 164)(134, 163)(135, 162)(136, 161)(137, 160)(138, 159)(139, 158)(140, 157)(141, 156)(142, 155)(143, 154)(144, 153)(145, 152)(146, 151)(147, 150)(148, 149)(165, 264)(166, 263)(167, 262)(168, 261)(169, 260)(170, 259)(171, 258)(172, 257)(173, 256)(174, 255)(175, 254)(176, 253)(177, 252)(178, 251)(179, 250)(180, 249)(181, 248)(182, 247)(183, 246)(184, 245)(185, 244)(186, 243)(187, 242)(188, 241)(189, 240)(190, 239)(191, 238)(192, 237)(193, 236)(194, 235)(195, 234)(196, 233)(197, 232)(198, 231)(199, 230)(200, 229)(201, 228)(202, 227)(203, 226)(204, 225)(205, 224)(206, 223)(207, 222)(208, 221)(209, 220)(210, 219)(211, 218)(212, 217)(213, 216)(214, 215)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 264, 12 ]
264
-1 132 133 2 164
-2 165 1 134 3
-3 166 2 135 4
-4 167 3 136 5
-5 168 4 137 6
-6 169 5 138 7
-7 170 6 139 8
-8 171 7 140 9
-9 172 8 141 10
-10 11 173 9 142
-11 143 12 174 10
-12 11 144 13 175
-13 176 12 145 14
-14 177 13 146 15
-15 178 14 147 16
-16 179 15 148 17
-17 180 16 149 18
-18 181 17 150 19
-19 182 18 151 20
-20 183 19 152 21
-21 22 184 20 153
-22 154 23 185 21
-23 22 155 24 186
-24 187 23 156 25
-25 188 24 157 26
-26 189 25 158 27
-27 190 26 159 28
-28 191 27 160 29
-29 192 28 161 30
-30 193 29 162 31
-31 194 30 163 32
-32 33 195 31 164
-33 165 34 196 32
-34 33 166 35 197
-35 198 34 167 36
-36 199 35 168 37
-37 200 36 169 38
-38 201 37 170 39
-39 202 38 171 40
-40 203 39 172 41
-41 204 40 173 42
-42 205 41 174 43
-43 44 206 42 175
-44 176 45 207 43
-45 44 177 46 208
-46 209 45 178 47
-47 210 46 179 48
-48 211 47 180 49
-49 212 48 181 50
-50 213 49 182 51
-51 214 50 183 52
-52 215 51 184 53
-53 216 52 185 54
-54 55 217 53 186
-55 187 56 218 54
-56 55 188 57 219
-57 220 56 189 58
-58 221 57 190 59
-59 222 58 191 60
-60 223 59 192 61
-61 224 60 193 62
-62 225 61 194 63
-63 226 62 195 64
-64 227 63 196 65
-65 66 228 64 197
-66 198 67 229 65
-67 66 199 68 230
-68 231 67 200 69
-69 232 68 201 70
-70 233 69 202 71
-71 234 70 203 72
-72 235 71 204 73
-73 236 72 205 74
-74 237 73 206 75
-75 238 74 207 76
-76 77 239 75 208
-77 209 78 240 76
-78 77 210 79 241
-79 242 78 211 80
-80 243 79 212 81
-81 244 80 213 82
-82 245 81 214 83
-83 246 82 215 84
-84 247 83 216 85
-85 248 84 217 86
-86 249 85 218 87
-87 88 250 86 219
-88 220 89 251 87
-89 88 221 90 252
-90 253 89 222 91
-91 254 90 223 92
-92 255 91 224 93
-93 256 92 225 94
-94 257 93 226 95
-95 258 94 227 96
-96 259 95 228 97
-97 260 96 229 98
-98 99 261 97 230
-99 231 100 262 98
-100 99 232 101 263
-101 264 100 233 102
-102 133 101 234 103
-103 134 102 235 104
-104 135 103 236 105
-105 136 104 237 106
-106 137 105 238 107
-107 138 106 239 108
-108 139 107 240 109
-109 110 140 108 241
-110 242 111 141 109
-111 110 243 112 142
-112 143 111 244 113
-113 144 112 245 114
-114 145 113 246 115
-115 146 114 247 116
-116 147 115 248 117
-117 148 116 249 118
-118 149 117 250 119
-119 150 118 251 120
-120 121 151 119 252
-121 253 122 152 120
-122 121 254 123 153
-123 154 122 255 124
-124 155 123 256 125
-125 156 124 257 126
-126 157 125 258 127
-127 158 126 259 128
-128 159 127 260 129
-129 160 128 261 130
-130 161 129 262 131
-131 132 162 130 263
-132 264 1 163 131
-133 231 1 167 102
-134 232 2 168 103
-135 233 3 169 104
-136 234 4 170 105
-137 235 5 171 106
-138 236 6 172 107
-139 237 7 173 108
-140 238 8 174 109
-141 110 239 9 175
-142 176 111 240 10
-143 11 177 112 241
-144 242 12 178 113
-145 243 13 179 114
-146 244 14 180 115
-147 245 15 181 116
-148 246 16 182 117
-149 247 17 183 118
-150 248 18 184 119
-151 249 19 185 120
-152 121 250 20 186
-153 187 122 251 21
-154 22 188 123 252
-155 253 23 189 124
-156 254 24 190 125
-157 255 25 191 126
-158 256 26 192 127
-159 257 27 193 128
-160 258 28 194 129
-161 259 29 195 130
-162 260 30 196 131
-163 132 261 31 197
-164 198 1 262 32
-165 33 199 2 263
-166 264 34 200 3
-167 133 35 201 4
-168 134 36 202 5
-169 135 37 203 6
-170 136 38 204 7
-171 137 39 205 8
-172 138 40 206 9
-173 139 41 207 10
-174 11 140 42 208
-175 209 12 141 43
-176 44 210 13 142
-177 143 45 211 14
-178 144 46 212 15
-179 145 47 213 16
-180 146 48 214 17
-181 147 49 215 18
-182 148 50 216 19
-183 149 51 217 20
-184 150 52 218 21
-185 22 151 53 219
-186 220 23 152 54
-187 55 221 24 153
-188 154 56 222 25
-189 155 57 223 26
-190 156 58 224 27
-191 157 59 225 28
-192 158 60 226 29
-193 159 61 227 30
-194 160 62 228 31
-195 161 63 229 32
-196 33 162 64 230
-197 231 34 163 65
-198 66 232 35 164
-199 165 67 233 36
-200 166 68 234 37
-201 167 69 235 38
-202 168 70 236 39
-203 169 71 237 40
-204 170 72 238 41
-205 171 73 239 42
-206 172 74 240 43
-207 44 173 75 241
-208 242 45 174 76
-209 77 243 46 175
-210 176 78 244 47
-211 177 79 245 48
-212 178 80 246 49
-213 179 81 247 50
-214 180 82 248 51
-215 181 83 249 52
-216 182 84 250 53
-217 183 85 251 54
-218 55 184 86 252
-219 253 56 185 87
-220 88 254 57 186
-221 187 89 255 58
-222 188 90 256 59
-223 189 91 257 60
-224 190 92 258 61
-225 191 93 259 62
-226 192 94 260 63
-227 193 95 261 64
-228 194 96 262 65
-229 66 195 97 263
-230 264 67 196 98
-231 99 133 68 197
-232 198 100 134 69
-233 199 101 135 70
-234 200 102 136 71
-235 201 103 137 72
-236 202 104 138 73
-237 203 105 139 74
-238 204 106 140 75
-239 205 107 141 76
-240 77 206 108 142
-241 143 78 207 109
-242 110 144 79 208
-243 209 111 145 80
-244 210 112 146 81
-245 211 113 147 82
-246 212 114 148 83
-247 213 115 149 84
-248 214 116 150 85
-249 215 117 151 86
-250 216 118 152 87
-251 88 217 119 153
-252 154 89 218 120
-253 121 155 90 219
-254 220 122 156 91
-255 221 123 157 92
-256 222 124 158 93
-257 223 125 159 94
-258 224 126 160 95
-259 225 127 161 96
-260 226 128 162 97
-261 227 129 163 98
-262 99 228 130 164
-263 165 100 229 131
-264 132 166 101 230
0

**************