C4graphGraph forms for C4 [ 264, 13 ] = R_132(35,100)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 264, 13 ] = R_132(35,100).

(I) Following is a form readable by MAGMA:

g:=Graph<264|{ {2, 3}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {1, 2}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {3, 4}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {15, 16}, {79, 80}, {47, 48}, {111, 112}, {133, 165}, {223, 255}, {222, 254}, {221, 253}, {220, 252}, {219, 251}, {218, 250}, {217, 249}, {216, 248}, {215, 247}, {214, 246}, {213, 245}, {212, 244}, {211, 243}, {210, 242}, {209, 241}, {208, 240}, {207, 239}, {206, 238}, {205, 237}, {204, 236}, {203, 235}, {202, 234}, {201, 233}, {200, 232}, {199, 231}, {198, 230}, {197, 229}, {196, 228}, {195, 227}, {194, 226}, {193, 225}, {192, 224}, {134, 166}, {135, 167}, {136, 168}, {137, 169}, {138, 170}, {139, 171}, {140, 172}, {141, 173}, {142, 174}, {143, 175}, {144, 176}, {145, 177}, {146, 178}, {147, 179}, {148, 180}, {149, 181}, {150, 182}, {151, 183}, {152, 184}, {153, 185}, {154, 186}, {155, 187}, {156, 188}, {157, 189}, {158, 190}, {159, 191}, {31, 32}, {95, 96}, {160, 192}, {191, 223}, {190, 222}, {189, 221}, {188, 220}, {187, 219}, {186, 218}, {185, 217}, {184, 216}, {183, 215}, {182, 214}, {181, 213}, {180, 212}, {179, 211}, {178, 210}, {177, 209}, {176, 208}, {175, 207}, {174, 206}, {173, 205}, {172, 204}, {171, 203}, {170, 202}, {169, 201}, {168, 200}, {167, 199}, {166, 198}, {165, 197}, {164, 196}, {163, 195}, {161, 193}, {162, 194}, {128, 225}, {130, 227}, {132, 229}, {129, 226}, {136, 236}, {137, 237}, {138, 238}, {139, 239}, {144, 244}, {145, 245}, {146, 246}, {147, 247}, {152, 252}, {153, 253}, {154, 254}, {155, 255}, {131, 228}, {133, 233}, {134, 234}, {135, 235}, {148, 248}, {149, 249}, {150, 250}, {151, 251}, {140, 240}, {141, 241}, {142, 242}, {143, 243}, {63, 64}, {1, 133}, {88, 220}, {83, 215}, {82, 214}, {81, 213}, {80, 212}, {75, 207}, {74, 206}, {73, 205}, {72, 204}, {67, 199}, {66, 198}, {65, 197}, {64, 196}, {59, 191}, {58, 190}, {57, 189}, {56, 188}, {2, 134}, {3, 135}, {8, 140}, {9, 141}, {10, 142}, {11, 143}, {16, 148}, {17, 149}, {18, 150}, {19, 151}, {24, 156}, {25, 157}, {26, 158}, {27, 159}, {32, 164}, {33, 165}, {34, 166}, {35, 167}, {40, 172}, {41, 173}, {42, 174}, {43, 175}, {48, 180}, {49, 181}, {50, 182}, {51, 183}, {89, 221}, {90, 222}, {91, 223}, {96, 228}, {97, 229}, {98, 230}, {99, 231}, {104, 236}, {105, 237}, {106, 238}, {107, 239}, {112, 244}, {113, 245}, {114, 246}, {115, 247}, {120, 252}, {121, 253}, {122, 254}, {123, 255}, {1, 132}, {4, 136}, {87, 219}, {86, 218}, {85, 217}, {84, 216}, {71, 203}, {70, 202}, {69, 201}, {68, 200}, {55, 187}, {54, 186}, {5, 137}, {6, 138}, {7, 139}, {20, 152}, {21, 153}, {22, 154}, {23, 155}, {36, 168}, {37, 169}, {38, 170}, {39, 171}, {52, 184}, {53, 185}, {100, 232}, {101, 233}, {102, 234}, {103, 235}, {116, 248}, {117, 249}, {118, 250}, {119, 251}, {12, 144}, {79, 211}, {78, 210}, {77, 209}, {76, 208}, {13, 145}, {14, 146}, {15, 147}, {44, 176}, {45, 177}, {46, 178}, {47, 179}, {108, 240}, {109, 241}, {110, 242}, {111, 243}, {63, 160}, {95, 192}, {127, 224}, {36, 133}, {62, 159}, {60, 157}, {58, 155}, {56, 153}, {54, 151}, {38, 135}, {40, 137}, {42, 139}, {44, 141}, {46, 143}, {48, 145}, {50, 147}, {52, 149}, {96, 193}, {98, 195}, {100, 197}, {102, 199}, {104, 201}, {106, 203}, {108, 205}, {110, 207}, {112, 209}, {114, 211}, {116, 213}, {118, 215}, {120, 217}, {122, 219}, {124, 221}, {126, 223}, {37, 134}, {61, 158}, {57, 154}, {41, 138}, {45, 142}, {49, 146}, {53, 150}, {97, 194}, {101, 198}, {105, 202}, {109, 206}, {113, 210}, {117, 214}, {121, 218}, {125, 222}, {43, 140}, {59, 156}, {51, 148}, {99, 196}, {107, 204}, {115, 212}, {123, 220}, {39, 136}, {55, 152}, {103, 200}, {119, 216}, {28, 160}, {29, 161}, {30, 162}, {31, 163}, {92, 224}, {93, 225}, {94, 226}, {95, 227}, {47, 144}, {111, 208}, {64, 161}, {88, 185}, {86, 183}, {84, 181}, {82, 179}, {80, 177}, {78, 175}, {76, 173}, {74, 171}, {72, 169}, {70, 167}, {68, 165}, {66, 163}, {90, 187}, {92, 189}, {94, 191}, {65, 162}, {85, 182}, {81, 178}, {77, 174}, {73, 170}, {69, 166}, {89, 186}, {93, 190}, {2, 231}, {8, 237}, {10, 239}, {16, 245}, {18, 247}, {24, 253}, {26, 255}, {1, 230}, {83, 180}, {75, 172}, {67, 164}, {9, 238}, {17, 246}, {25, 254}, {91, 188}, {3, 232}, {7, 236}, {19, 248}, {23, 252}, {4, 233}, {6, 235}, {20, 249}, {22, 251}, {5, 234}, {87, 184}, {71, 168}, {21, 250}, {11, 240}, {15, 244}, {60, 192}, {63, 195}, {62, 194}, {61, 193}, {12, 241}, {14, 243}, {13, 242}, {79, 176}, {127, 128}, {27, 256}, {31, 260}, {28, 257}, {30, 259}, {29, 258}, {32, 261}, {34, 263}, {33, 262}, {35, 264}, {124, 256}, {125, 257}, {126, 258}, {127, 259}, {128, 260}, {129, 261}, {130, 262}, {131, 263}, {132, 264}, {156, 256}, {157, 257}, {158, 258}, {159, 259}, {160, 260}, {163, 263}, {162, 262}, {161, 261}, {164, 264}, {224, 256}, {232, 264}, {231, 263}, {230, 262}, {229, 261}, {228, 260}, {227, 259}, {226, 258}, {225, 257} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 133)(3, 233)(5, 136)(6, 236)(8, 139)(9, 239)(11, 142)(12, 242)(14, 145)(15, 245)(17, 148)(18, 248)(20, 151)(21, 251)(23, 154)(24, 254)(26, 157)(27, 257)(29, 160)(30, 260)(32, 163)(33, 263)(35, 166)(36, 134)(38, 169)(39, 137)(41, 172)(42, 140)(44, 175)(45, 143)(47, 178)(48, 146)(50, 181)(51, 149)(53, 184)(54, 152)(56, 187)(57, 155)(59, 190)(60, 158)(62, 193)(63, 161)(65, 196)(66, 164)(68, 199)(69, 167)(71, 202)(72, 170)(74, 205)(75, 173)(77, 208)(78, 176)(80, 211)(81, 179)(83, 214)(84, 182)(86, 217)(87, 185)(89, 220)(90, 188)(92, 223)(93, 191)(95, 226)(96, 194)(98, 229)(99, 197)(101, 232)(102, 200)(104, 235)(105, 203)(107, 238)(108, 206)(110, 241)(111, 209)(113, 244)(114, 212)(116, 247)(117, 215)(119, 250)(120, 218)(122, 253)(123, 221)(125, 256)(126, 224)(128, 259)(129, 227)(131, 262)(132, 230)(135, 201)(138, 204)(141, 207)(144, 210)(147, 213)(150, 216)(153, 219)(156, 222)(159, 225)(162, 228)(165, 231)(168, 234)(171, 237)(174, 240)(177, 243)(180, 246)(183, 249)(186, 252)(189, 255)(192, 258)(195, 261)(198, 264)
b: (2, 132)(3, 131)(4, 130)(5, 129)(6, 128)(7, 127)(8, 126)(9, 125)(10, 124)(11, 123)(12, 122)(13, 121)(14, 120)(15, 119)(16, 118)(17, 117)(18, 116)(19, 115)(20, 114)(21, 113)(22, 112)(23, 111)(24, 110)(25, 109)(26, 108)(27, 107)(28, 106)(29, 105)(30, 104)(31, 103)(32, 102)(33, 101)(34, 100)(35, 99)(36, 98)(37, 97)(38, 96)(39, 95)(40, 94)(41, 93)(42, 92)(43, 91)(44, 90)(45, 89)(46, 88)(47, 87)(48, 86)(49, 85)(50, 84)(51, 83)(52, 82)(53, 81)(54, 80)(55, 79)(56, 78)(57, 77)(58, 76)(59, 75)(60, 74)(61, 73)(62, 72)(63, 71)(64, 70)(65, 69)(66, 68)(133, 230)(134, 229)(135, 228)(136, 227)(137, 226)(138, 225)(139, 224)(140, 223)(141, 222)(142, 221)(143, 220)(144, 219)(145, 218)(146, 217)(147, 216)(148, 215)(149, 214)(150, 213)(151, 212)(152, 211)(153, 210)(154, 209)(155, 208)(156, 207)(157, 206)(158, 205)(159, 204)(160, 203)(161, 202)(162, 201)(163, 200)(164, 199)(165, 198)(166, 197)(167, 196)(168, 195)(169, 194)(170, 193)(171, 192)(172, 191)(173, 190)(174, 189)(175, 188)(176, 187)(177, 186)(178, 185)(179, 184)(180, 183)(181, 182)(231, 264)(232, 263)(233, 262)(234, 261)(235, 260)(236, 259)(237, 258)(238, 257)(239, 256)(240, 255)(241, 254)(242, 253)(243, 252)(244, 251)(245, 250)(246, 249)(247, 248)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132)(133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 264, 13 ]
264
-1 132 133 2 230
-2 231 1 134 3
-3 232 2 135 4
-4 233 3 136 5
-5 234 4 137 6
-6 235 5 138 7
-7 236 6 139 8
-8 237 7 140 9
-9 238 8 141 10
-10 11 239 9 142
-11 143 12 240 10
-12 11 144 13 241
-13 242 12 145 14
-14 243 13 146 15
-15 244 14 147 16
-16 245 15 148 17
-17 246 16 149 18
-18 247 17 150 19
-19 248 18 151 20
-20 249 19 152 21
-21 22 250 20 153
-22 154 23 251 21
-23 22 155 24 252
-24 253 23 156 25
-25 254 24 157 26
-26 255 25 158 27
-27 256 26 159 28
-28 257 27 160 29
-29 258 28 161 30
-30 259 29 162 31
-31 260 30 163 32
-32 33 261 31 164
-33 165 34 262 32
-34 33 166 35 263
-35 264 34 167 36
-36 133 35 168 37
-37 134 36 169 38
-38 135 37 170 39
-39 136 38 171 40
-40 137 39 172 41
-41 138 40 173 42
-42 139 41 174 43
-43 44 140 42 175
-44 176 45 141 43
-45 44 177 46 142
-46 143 45 178 47
-47 144 46 179 48
-48 145 47 180 49
-49 146 48 181 50
-50 147 49 182 51
-51 148 50 183 52
-52 149 51 184 53
-53 150 52 185 54
-54 55 151 53 186
-55 187 56 152 54
-56 55 188 57 153
-57 154 56 189 58
-58 155 57 190 59
-59 156 58 191 60
-60 157 59 192 61
-61 158 60 193 62
-62 159 61 194 63
-63 160 62 195 64
-64 161 63 196 65
-65 66 162 64 197
-66 198 67 163 65
-67 66 199 68 164
-68 165 67 200 69
-69 166 68 201 70
-70 167 69 202 71
-71 168 70 203 72
-72 169 71 204 73
-73 170 72 205 74
-74 171 73 206 75
-75 172 74 207 76
-76 77 173 75 208
-77 209 78 174 76
-78 77 210 79 175
-79 176 78 211 80
-80 177 79 212 81
-81 178 80 213 82
-82 179 81 214 83
-83 180 82 215 84
-84 181 83 216 85
-85 182 84 217 86
-86 183 85 218 87
-87 88 184 86 219
-88 220 89 185 87
-89 88 221 90 186
-90 187 89 222 91
-91 188 90 223 92
-92 189 91 224 93
-93 190 92 225 94
-94 191 93 226 95
-95 192 94 227 96
-96 193 95 228 97
-97 194 96 229 98
-98 99 195 97 230
-99 231 100 196 98
-100 99 232 101 197
-101 198 100 233 102
-102 199 101 234 103
-103 200 102 235 104
-104 201 103 236 105
-105 202 104 237 106
-106 203 105 238 107
-107 204 106 239 108
-108 205 107 240 109
-109 110 206 108 241
-110 242 111 207 109
-111 110 243 112 208
-112 209 111 244 113
-113 210 112 245 114
-114 211 113 246 115
-115 212 114 247 116
-116 213 115 248 117
-117 214 116 249 118
-118 215 117 250 119
-119 216 118 251 120
-120 121 217 119 252
-121 253 122 218 120
-122 121 254 123 219
-123 220 122 255 124
-124 221 123 256 125
-125 222 124 257 126
-126 223 125 258 127
-127 224 126 259 128
-128 225 127 260 129
-129 226 128 261 130
-130 227 129 262 131
-131 132 228 130 263
-132 264 1 229 131
-133 165 1 233 36
-134 166 2 234 37
-135 167 3 235 38
-136 168 4 236 39
-137 169 5 237 40
-138 170 6 238 41
-139 171 7 239 42
-140 172 8 240 43
-141 44 173 9 241
-142 242 45 174 10
-143 11 243 46 175
-144 176 12 244 47
-145 177 13 245 48
-146 178 14 246 49
-147 179 15 247 50
-148 180 16 248 51
-149 181 17 249 52
-150 182 18 250 53
-151 183 19 251 54
-152 55 184 20 252
-153 253 56 185 21
-154 22 254 57 186
-155 187 23 255 58
-156 188 24 256 59
-157 189 25 257 60
-158 190 26 258 61
-159 191 27 259 62
-160 192 28 260 63
-161 193 29 261 64
-162 194 30 262 65
-163 66 195 31 263
-164 264 67 196 32
-165 33 133 68 197
-166 198 34 134 69
-167 199 35 135 70
-168 200 36 136 71
-169 201 37 137 72
-170 202 38 138 73
-171 203 39 139 74
-172 204 40 140 75
-173 205 41 141 76
-174 77 206 42 142
-175 143 78 207 43
-176 44 144 79 208
-177 209 45 145 80
-178 210 46 146 81
-179 211 47 147 82
-180 212 48 148 83
-181 213 49 149 84
-182 214 50 150 85
-183 215 51 151 86
-184 216 52 152 87
-185 88 217 53 153
-186 154 89 218 54
-187 55 155 90 219
-188 220 56 156 91
-189 221 57 157 92
-190 222 58 158 93
-191 223 59 159 94
-192 224 60 160 95
-193 225 61 161 96
-194 226 62 162 97
-195 227 63 163 98
-196 99 228 64 164
-197 165 100 229 65
-198 66 166 101 230
-199 231 67 167 102
-200 232 68 168 103
-201 233 69 169 104
-202 234 70 170 105
-203 235 71 171 106
-204 236 72 172 107
-205 237 73 173 108
-206 238 74 174 109
-207 110 239 75 175
-208 176 111 240 76
-209 77 177 112 241
-210 242 78 178 113
-211 243 79 179 114
-212 244 80 180 115
-213 245 81 181 116
-214 246 82 182 117
-215 247 83 183 118
-216 248 84 184 119
-217 249 85 185 120
-218 121 250 86 186
-219 187 122 251 87
-220 88 188 123 252
-221 253 89 189 124
-222 254 90 190 125
-223 255 91 191 126
-224 256 92 192 127
-225 257 93 193 128
-226 258 94 194 129
-227 259 95 195 130
-228 260 96 196 131
-229 132 261 97 197
-230 198 1 262 98
-231 99 199 2 263
-232 264 100 200 3
-233 133 101 201 4
-234 134 102 202 5
-235 135 103 203 6
-236 136 104 204 7
-237 137 105 205 8
-238 138 106 206 9
-239 139 107 207 10
-240 11 140 108 208
-241 209 12 141 109
-242 110 210 13 142
-243 143 111 211 14
-244 144 112 212 15
-245 145 113 213 16
-246 146 114 214 17
-247 147 115 215 18
-248 148 116 216 19
-249 149 117 217 20
-250 150 118 218 21
-251 22 151 119 219
-252 220 23 152 120
-253 121 221 24 153
-254 154 122 222 25
-255 155 123 223 26
-256 156 124 224 27
-257 157 125 225 28
-258 158 126 226 29
-259 159 127 227 30
-260 160 128 228 31
-261 161 129 229 32
-262 33 162 130 230
-263 231 34 163 131
-264 132 232 35 164
0

**************