C4graphGraph forms for C4 [ 264, 15 ] = PL(MSY(4,33,23,0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 264, 15 ] = PL(MSY(4,33,23,0)).

(I) Following is a form readable by MAGMA:

g:=Graph<264|{ {128, 241}, {128, 244}, {129, 245}, {128, 245}, {128, 248}, {129, 249}, {129, 248}, {130, 249}, {129, 252}, {130, 252}, {131, 253}, {130, 253}, {29, 157}, {99, 227}, {43, 171}, {11, 138}, {43, 170}, {28, 157}, {11, 137}, {45, 175}, {44, 174}, {28, 158}, {73, 203}, {82, 208}, {29, 158}, {45, 174}, {44, 175}, {72, 203}, {83, 208}, {1, 133}, {2, 134}, {72, 204}, {12, 137}, {73, 204}, {90, 223}, {12, 138}, {44, 170}, {89, 223}, {1, 134}, {99, 228}, {44, 171}, {2, 133}, {18, 154}, {42, 162}, {92, 212}, {19, 154}, {42, 163}, {93, 212}, {19, 153}, {48, 186}, {41, 163}, {18, 153}, {127, 244}, {48, 187}, {41, 162}, {75, 192}, {80, 219}, {42, 166}, {43, 167}, {76, 192}, {80, 220}, {31, 146}, {43, 166}, {42, 167}, {31, 145}, {127, 241}, {126, 240}, {97, 239}, {49, 191}, {48, 190}, {93, 211}, {48, 191}, {127, 240}, {96, 239}, {49, 190}, {92, 211}, {96, 240}, {70, 215}, {125, 236}, {97, 240}, {85, 196}, {69, 215}, {127, 237}, {126, 236}, {86, 196}, {79, 220}, {126, 237}, {47, 187}, {125, 233}, {124, 232}, {79, 219}, {47, 186}, {125, 232}, {86, 195}, {85, 195}, {95, 200}, {126, 233}, {21, 141}, {125, 229}, {124, 228}, {95, 199}, {47, 183}, {46, 182}, {33, 185}, {22, 142}, {32, 185}, {124, 229}, {47, 182}, {46, 183}, {32, 186}, {123, 225}, {122, 224}, {21, 142}, {123, 224}, {33, 186}, {22, 141}, {9, 149}, {46, 178}, {83, 207}, {8, 149}, {124, 225}, {46, 179}, {69, 216}, {82, 207}, {8, 150}, {45, 179}, {70, 216}, {9, 150}, {123, 228}, {45, 178}, {22, 182}, {121, 217}, {120, 216}, {67, 227}, {23, 182}, {121, 216}, {93, 252}, {23, 181}, {94, 252}, {22, 181}, {122, 217}, {119, 212}, {84, 247}, {5, 161}, {35, 135}, {34, 134}, {6, 162}, {76, 232}, {83, 247}, {34, 135}, {121, 220}, {35, 134}, {77, 232}, {94, 251}, {93, 251}, {123, 221}, {122, 220}, {119, 209}, {118, 208}, {5, 162}, {122, 221}, {119, 208}, {96, 199}, {6, 161}, {67, 228}, {35, 139}, {96, 200}, {15, 166}, {120, 209}, {35, 138}, {15, 165}, {37, 143}, {36, 142}, {77, 231}, {36, 143}, {37, 142}, {76, 231}, {83, 248}, {2, 174}, {121, 213}, {120, 212}, {84, 248}, {3, 174}, {120, 213}, {3, 173}, {36, 138}, {2, 173}, {36, 139}, {25, 169}, {117, 197}, {116, 196}, {39, 151}, {38, 150}, {26, 170}, {32, 145}, {116, 197}, {39, 150}, {38, 151}, {32, 146}, {115, 193}, {114, 192}, {40, 154}, {25, 170}, {115, 192}, {40, 155}, {26, 169}, {9, 189}, {38, 146}, {10, 190}, {16, 165}, {116, 193}, {38, 147}, {16, 166}, {41, 159}, {40, 158}, {37, 147}, {9, 190}, {115, 196}, {41, 158}, {40, 159}, {37, 146}, {10, 189}, {71, 255}, {70, 255}, {117, 204}, {74, 243}, {89, 224}, {64, 250}, {119, 205}, {118, 204}, {73, 243}, {86, 236}, {90, 224}, {64, 251}, {118, 205}, {87, 236}, {13, 177}, {117, 201}, {116, 200}, {39, 155}, {87, 235}, {12, 177}, {117, 200}, {39, 154}, {73, 244}, {86, 235}, {12, 178}, {64, 254}, {65, 255}, {74, 244}, {13, 178}, {118, 201}, {64, 255}, {65, 254}, {33, 225}, {95, 159}, {77, 140}, {112, 177}, {109, 172}, {94, 159}, {78, 140}, {111, 173}, {110, 172}, {33, 226}, {110, 173}, {68, 135}, {63, 251}, {113, 181}, {112, 180}, {109, 169}, {108, 168}, {67, 135}, {24, 221}, {112, 181}, {109, 168}, {63, 250}, {78, 139}, {24, 222}, {77, 139}, {87, 144}, {110, 169}, {26, 210}, {113, 185}, {112, 184}, {109, 165}, {108, 164}, {62, 246}, {63, 247}, {84, 156}, {88, 144}, {23, 222}, {113, 184}, {108, 165}, {62, 247}, {27, 210}, {63, 246}, {85, 156}, {23, 221}, {107, 161}, {106, 160}, {27, 209}, {26, 209}, {114, 185}, {107, 160}, {67, 136}, {6, 202}, {62, 242}, {68, 136}, {7, 202}, {113, 188}, {108, 161}, {62, 243}, {7, 201}, {115, 189}, {114, 188}, {61, 243}, {85, 155}, {6, 201}, {114, 189}, {107, 164}, {61, 242}, {84, 155}, {59, 235}, {4, 213}, {59, 234}, {19, 194}, {4, 214}, {61, 239}, {60, 238}, {19, 193}, {74, 152}, {60, 239}, {61, 238}, {75, 152}, {13, 217}, {14, 218}, {3, 214}, {20, 193}, {3, 213}, {60, 234}, {20, 194}, {13, 218}, {60, 235}, {14, 217}, {88, 143}, {29, 197}, {99, 187}, {58, 226}, {30, 198}, {87, 143}, {58, 227}, {98, 187}, {57, 227}, {29, 198}, {111, 180}, {57, 226}, {30, 197}, {17, 205}, {59, 231}, {58, 230}, {75, 151}, {16, 205}, {59, 230}, {58, 231}, {74, 151}, {16, 206}, {111, 177}, {110, 176}, {98, 188}, {17, 206}, {111, 176}, {99, 188}, {1, 225}, {101, 133}, {55, 215}, {54, 214}, {88, 184}, {27, 250}, {100, 133}, {55, 214}, {54, 215}, {89, 184}, {27, 249}, {56, 218}, {1, 226}, {56, 219}, {71, 164}, {17, 245}, {54, 210}, {18, 246}, {71, 163}, {28, 249}, {54, 211}, {28, 250}, {57, 223}, {56, 222}, {53, 211}, {17, 246}, {57, 222}, {56, 223}, {53, 210}, {18, 245}, {101, 140}, {69, 175}, {103, 141}, {102, 140}, {68, 175}, {102, 141}, {72, 163}, {10, 230}, {101, 137}, {100, 136}, {55, 219}, {72, 164}, {11, 230}, {101, 136}, {55, 218}, {11, 229}, {89, 183}, {10, 229}, {102, 137}, {88, 183}, {30, 238}, {105, 153}, {104, 152}, {50, 194}, {91, 171}, {92, 172}, {31, 238}, {105, 152}, {98, 147}, {50, 195}, {31, 237}, {97, 147}, {49, 195}, {30, 237}, {106, 153}, {103, 148}, {49, 194}, {76, 191}, {50, 198}, {51, 199}, {68, 176}, {75, 191}, {7, 242}, {105, 156}, {97, 148}, {51, 198}, {50, 199}, {69, 176}, {82, 167}, {7, 241}, {107, 157}, {106, 156}, {103, 145}, {102, 144}, {98, 148}, {81, 167}, {91, 172}, {106, 157}, {103, 144}, {92, 171}, {5, 253}, {51, 203}, {4, 253}, {104, 145}, {51, 202}, {8, 241}, {81, 168}, {4, 254}, {53, 207}, {52, 206}, {8, 242}, {78, 180}, {82, 168}, {5, 254}, {53, 206}, {52, 207}, {79, 180}, {21, 233}, {105, 149}, {104, 148}, {79, 179}, {20, 233}, {104, 149}, {78, 179}, {20, 234}, {52, 202}, {94, 160}, {21, 234}, {52, 203}, {95, 160}, {14, 258}, {15, 258}, {15, 257}, {14, 257}, {25, 261}, {24, 261}, {24, 262}, {25, 262}, {34, 262}, {34, 263}, {66, 258}, {66, 259}, {65, 259}, {65, 258}, {66, 262}, {66, 263}, {70, 256}, {71, 256}, {81, 259}, {90, 264}, {80, 259}, {91, 264}, {80, 260}, {81, 260}, {91, 263}, {90, 263}, {100, 261}, {100, 264}, {132, 260}, {132, 261}, {130, 256}, {131, 257}, {131, 256}, {132, 257}, {131, 260}, {132, 264} }>;

(II) A more general form is to represent the graph as the orbit of {128, 241} under the group generated by the following permutations:

a: (34, 100)(35, 101)(36, 102)(37, 103)(38, 104)(39, 105)(40, 106)(41, 107)(42, 108)(43, 109)(44, 110)(45, 111)(46, 112)(47, 113)(48, 114)(49, 115)(50, 116)(51, 117)(52, 118)(53, 119)(54, 120)(55, 121)(56, 122)(57, 123)(58, 124)(59, 125)(60, 126)(61, 127)(62, 128)(63, 129)(64, 130)(65, 131)(66, 132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195, 196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211, 212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227, 228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)(241, 242)(243, 244)(245, 246)(247, 248)(249, 250)(251, 252)(253, 254)(255, 256)(257, 258)(259, 260)(261, 262)(263, 264)
b: (2, 33)(3, 32)(4, 31)(5, 30)(6, 29)(7, 28)(8, 27)(9, 26)(10, 25)(11, 24)(12, 23)(13, 22)(14, 21)(15, 20)(16, 19)(17, 18)(34, 58)(35, 57)(36, 56)(37, 55)(38, 54)(39, 53)(40, 52)(41, 51)(42, 50)(43, 49)(44, 48)(45, 47)(59, 66)(60, 65)(61, 64)(62, 63)(68, 99)(69, 98)(70, 97)(71, 96)(72, 95)(73, 94)(74, 93)(75, 92)(76, 91)(77, 90)(78, 89)(79, 88)(80, 87)(81, 86)(82, 85)(83, 84)(100, 124)(101, 123)(102, 122)(103, 121)(104, 120)(105, 119)(106, 118)(107, 117)(108, 116)(109, 115)(110, 114)(111, 113)(125, 132)(126, 131)(127, 130)(128, 129)(133, 225)(134, 226)(135, 227)(136, 228)(137, 221)(138, 222)(139, 223)(140, 224)(141, 217)(142, 218)(143, 219)(144, 220)(145, 213)(146, 214)(147, 215)(148, 216)(149, 209)(150, 210)(151, 211)(152, 212)(153, 205)(154, 206)(155, 207)(156, 208)(157, 201)(158, 202)(159, 203)(160, 204)(161, 197)(162, 198)(163, 199)(164, 200)(165, 193)(166, 194)(167, 195)(168, 196)(169, 189)(170, 190)(171, 191)(172, 192)(173, 185)(174, 186)(175, 187)(176, 188)(177, 181)(178, 182)(179, 183)(180, 184)(229, 261)(230, 262)(231, 263)(232, 264)(233, 257)(234, 258)(235, 259)(236, 260)(237, 253)(238, 254)(239, 255)(240, 256)(241, 249)(242, 250)(243, 251)(244, 252)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33)(34, 44, 54, 64, 41, 51, 61, 38, 48, 58, 35, 45, 55, 65, 42, 52, 62, 39, 49, 59, 36, 46, 56, 66, 43, 53, 63, 40, 50, 60, 37, 47, 57)(67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99)(100, 110, 120, 130, 107, 117, 127, 104, 114, 124, 101, 111, 121, 131, 108, 118, 128, 105, 115, 125, 102, 112, 122, 132, 109, 119, 129, 106, 116, 126, 103, 113, 123)(133, 173, 213, 253, 161, 201, 241, 149, 189, 229, 137, 177, 217, 257, 165, 205, 245, 153, 193, 233, 141, 181, 221, 261, 169, 209, 249, 157, 197, 237, 145, 185, 225)(134, 174, 214, 254, 162, 202, 242, 150, 190, 230, 138, 178, 218, 258, 166, 206, 246, 154, 194, 234, 142, 182, 222, 262, 170, 210, 250, 158, 198, 238, 146, 186, 226)(135, 175, 215, 255, 163, 203, 243, 151, 191, 231, 139, 179, 219, 259, 167, 207, 247, 155, 195, 235, 143, 183, 223, 263, 171, 211, 251, 159, 199, 239, 147, 187, 227)(136, 176, 216, 256, 164, 204, 244, 152, 192, 232, 140, 180, 220, 260, 168, 208, 248, 156, 196, 236, 144, 184, 224, 264, 172, 212, 252, 160, 200, 240, 148, 188, 228)
d: (1, 34, 91, 109, 16, 52, 73, 127, 31, 37, 88, 112, 13, 55, 70, 130, 28, 40, 85, 115, 10, 58, 67, 100, 25, 43, 82, 118, 7, 61, 97, 103, 22, 46, 79, 121, 4, 64, 94, 106, 19, 49, 76, 124)(2, 66, 92, 108, 17, 51, 74, 126, 32, 36, 89, 111, 14, 54, 71, 129, 29, 39, 86, 114, 11, 57, 68, 132, 26, 42, 83, 117, 8, 60, 98, 102, 23, 45, 80, 120, 5, 63, 95, 105, 20, 48, 77, 123)(3, 65, 93, 107, 18, 50, 75, 125, 33, 35, 90, 110, 15, 53, 72, 128, 30, 38, 87, 113, 12, 56, 69, 131, 27, 41, 84, 116, 9, 59, 99, 101, 24, 44, 81, 119, 6, 62, 96, 104, 21, 47, 78, 122)(133, 262, 171, 168, 205, 202, 243, 240, 145, 142, 183, 180, 217, 214, 255, 252, 157, 154, 195, 192, 229, 226, 135, 264, 169, 166, 207, 204, 241, 238, 147, 144, 181, 178, 219, 216, 253, 250, 159, 156, 193, 190, 231, 228)(134, 263, 172, 165, 206, 203, 244, 237, 146, 143, 184, 177, 218, 215, 256, 249, 158, 155, 196, 189, 230, 227, 136, 261, 170, 167, 208, 201, 242, 239, 148, 141, 182, 179, 220, 213, 254, 251, 160, 153, 194, 191, 232, 225)(137, 222, 175, 260, 209, 162, 247, 200, 149, 234, 187, 140, 221, 174, 259, 212, 161, 246, 199, 152, 233, 186, 139, 224, 173, 258, 211, 164, 245, 198, 151, 236, 185, 138, 223, 176, 257, 210, 163, 248, 197, 150, 235, 188)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 264, 15 ]
264
-1 133 134 225 226
-2 133 134 173 174
-3 213 214 173 174
-4 253 254 213 214
-5 253 254 161 162
-6 201 202 161 162
-7 242 201 202 241
-8 242 149 150 241
-9 189 190 149 150
-10 189 190 229 230
-11 137 138 229 230
-12 177 178 137 138
-13 177 178 217 218
-14 257 258 217 218
-15 165 166 257 258
-16 165 166 205 206
-17 245 246 205 206
-18 154 245 246 153
-19 154 193 194 153
-20 233 234 193 194
-21 233 234 141 142
-22 181 182 141 142
-23 221 222 181 182
-24 221 222 261 262
-25 169 170 261 262
-26 209 210 169 170
-27 209 210 249 250
-28 157 158 249 250
-29 198 157 158 197
-30 198 237 238 197
-31 145 146 237 238
-32 145 146 185 186
-33 225 226 185 186
-34 134 135 262 263
-35 134 135 138 139
-36 143 138 139 142
-37 143 146 147 142
-38 146 147 150 151
-39 154 155 150 151
-40 154 155 158 159
-41 158 159 162 163
-42 166 167 162 163
-43 166 167 170 171
-44 170 171 174 175
-45 178 179 174 175
-46 178 179 182 183
-47 187 182 183 186
-48 187 190 191 186
-49 190 191 194 195
-50 198 199 194 195
-51 198 199 202 203
-52 202 203 206 207
-53 210 211 206 207
-54 210 211 214 215
-55 214 215 218 219
-56 222 223 218 219
-57 222 223 226 227
-58 231 226 227 230
-59 231 234 235 230
-60 234 235 238 239
-61 242 243 238 239
-62 242 243 246 247
-63 246 247 250 251
-64 254 255 250 251
-65 254 255 258 259
-66 258 259 262 263
-67 135 136 227 228
-68 176 135 136 175
-69 176 215 216 175
-70 255 256 215 216
-71 255 256 163 164
-72 203 204 163 164
-73 243 244 203 204
-74 243 244 151 152
-75 191 192 151 152
-76 231 232 191 192
-77 231 232 139 140
-78 179 180 139 140
-79 220 179 180 219
-80 220 259 260 219
-81 167 168 259 260
-82 167 168 207 208
-83 247 248 207 208
-84 155 156 247 248
-85 155 156 195 196
-86 235 236 195 196
-87 143 144 235 236
-88 143 144 183 184
-89 223 224 183 184
-90 264 223 224 263
-91 264 171 172 263
-92 211 212 171 172
-93 211 212 251 252
-94 159 160 251 252
-95 199 200 159 160
-96 199 200 239 240
-97 147 148 239 240
-98 187 188 147 148
-99 187 188 227 228
-100 264 133 136 261
-101 133 136 137 140
-102 144 137 140 141
-103 144 145 148 141
-104 145 148 149 152
-105 156 149 152 153
-106 156 157 160 153
-107 157 160 161 164
-108 165 168 161 164
-109 165 168 169 172
-110 176 169 172 173
-111 176 177 180 173
-112 177 180 181 184
-113 188 181 184 185
-114 188 189 192 185
-115 189 192 193 196
-116 200 193 196 197
-117 200 201 204 197
-118 201 204 205 208
-119 209 212 205 208
-120 209 212 213 216
-121 220 213 216 217
-122 220 221 224 217
-123 221 224 225 228
-124 232 225 228 229
-125 232 233 236 229
-126 233 236 237 240
-127 244 237 240 241
-128 244 245 248 241
-129 245 248 249 252
-130 253 256 249 252
-131 253 256 257 260
-132 264 257 260 261
-133 1 100 2 101
-134 1 34 2 35
-135 34 67 35 68
-136 67 100 68 101
-137 11 12 101 102
-138 11 12 35 36
-139 77 78 35 36
-140 77 78 101 102
-141 22 102 103 21
-142 22 36 37 21
-143 88 36 37 87
-144 88 102 103 87
-145 103 104 31 32
-146 37 38 31 32
-147 37 38 97 98
-148 103 104 97 98
-149 104 105 8 9
-150 38 39 8 9
-151 38 39 74 75
-152 104 105 74 75
-153 105 18 106 19
-154 39 18 40 19
-155 39 40 84 85
-156 105 84 106 85
-157 28 29 106 107
-158 28 29 40 41
-159 94 40 95 41
-160 94 95 106 107
-161 5 6 107 108
-162 5 6 41 42
-163 71 72 41 42
-164 71 72 107 108
-165 15 16 108 109
-166 15 16 42 43
-167 81 82 42 43
-168 81 82 108 109
-169 110 25 26 109
-170 44 25 26 43
-171 44 91 92 43
-172 110 91 92 109
-173 110 111 2 3
-174 44 45 2 3
-175 44 45 68 69
-176 110 111 68 69
-177 12 111 13 112
-178 12 45 13 46
-179 45 78 46 79
-180 78 111 79 112
-181 22 23 112 113
-182 22 23 46 47
-183 88 89 46 47
-184 88 89 112 113
-185 33 113 114 32
-186 33 47 48 32
-187 99 47 48 98
-188 99 113 114 98
-189 114 115 9 10
-190 48 49 9 10
-191 48 49 75 76
-192 114 115 75 76
-193 115 116 19 20
-194 49 50 19 20
-195 49 50 85 86
-196 115 116 85 86
-197 116 29 117 30
-198 50 29 51 30
-199 50 51 95 96
-200 116 95 117 96
-201 6 7 117 118
-202 6 7 51 52
-203 72 51 73 52
-204 72 73 117 118
-205 16 17 118 119
-206 16 17 52 53
-207 82 83 52 53
-208 82 83 118 119
-209 26 27 119 120
-210 26 27 53 54
-211 92 93 53 54
-212 92 93 119 120
-213 121 3 4 120
-214 55 3 4 54
-215 55 69 70 54
-216 121 69 70 120
-217 121 122 13 14
-218 55 56 13 14
-219 55 56 79 80
-220 121 122 79 80
-221 23 122 24 123
-222 23 56 24 57
-223 56 89 57 90
-224 89 122 90 123
-225 33 1 123 124
-226 33 1 57 58
-227 99 67 57 58
-228 99 67 123 124
-229 11 124 125 10
-230 11 58 59 10
-231 77 58 59 76
-232 77 124 125 76
-233 125 126 20 21
-234 59 60 20 21
-235 59 60 86 87
-236 125 126 86 87
-237 126 127 30 31
-238 60 61 30 31
-239 60 61 96 97
-240 126 127 96 97
-241 127 7 128 8
-242 61 7 62 8
-243 61 62 73 74
-244 127 73 128 74
-245 17 18 128 129
-246 17 18 62 63
-247 83 62 84 63
-248 83 84 128 129
-249 27 28 129 130
-250 27 28 63 64
-251 93 94 63 64
-252 93 94 129 130
-253 4 5 130 131
-254 4 5 64 65
-255 70 71 64 65
-256 70 71 130 131
-257 132 14 15 131
-258 66 14 15 65
-259 66 80 81 65
-260 132 80 81 131
-261 132 100 24 25
-262 66 34 24 25
-263 66 34 90 91
-264 132 100 90 91
0

**************