C4graphGraph forms for C4 [ 264, 18 ] = Pr_88(1,53,57,21)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 264, 18 ] = Pr_88(1,53,57,21).

(I) Following is a form readable by MAGMA:

g:=Graph<264|{ {2, 3}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {1, 2}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {3, 4}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {7, 8}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {192, 213}, {234, 255}, {232, 253}, {226, 247}, {224, 245}, {194, 215}, {200, 221}, {202, 223}, {193, 214}, {233, 254}, {225, 246}, {201, 222}, {195, 216}, {231, 252}, {227, 248}, {199, 220}, {196, 217}, {230, 251}, {228, 249}, {198, 219}, {15, 16}, {229, 250}, {79, 80}, {47, 48}, {197, 218}, {64, 99}, {88, 123}, {84, 119}, {80, 115}, {76, 111}, {72, 107}, {68, 103}, {65, 100}, {83, 118}, {81, 116}, {75, 110}, {73, 108}, {67, 102}, {66, 101}, {82, 117}, {74, 109}, {203, 224}, {223, 244}, {219, 240}, {207, 228}, {69, 104}, {222, 243}, {220, 241}, {87, 122}, {85, 120}, {71, 106}, {204, 225}, {206, 227}, {70, 105}, {221, 242}, {86, 121}, {205, 226}, {208, 229}, {218, 239}, {216, 237}, {210, 231}, {209, 230}, {217, 238}, {128, 185}, {130, 187}, {132, 189}, {134, 191}, {129, 186}, {215, 236}, {211, 232}, {133, 190}, {77, 112}, {214, 235}, {212, 233}, {79, 114}, {31, 32}, {213, 234}, {78, 113}, {131, 188}, {180, 247}, {184, 251}, {188, 255}, {177, 244}, {179, 246}, {185, 252}, {187, 254}, {135, 192}, {143, 200}, {151, 208}, {159, 216}, {167, 224}, {175, 232}, {178, 245}, {186, 253}, {136, 193}, {138, 195}, {140, 197}, {142, 199}, {152, 209}, {154, 211}, {156, 213}, {158, 215}, {168, 225}, {170, 227}, {172, 229}, {174, 231}, {137, 194}, {141, 198}, {153, 210}, {157, 214}, {169, 226}, {173, 230}, {181, 248}, {183, 250}, {139, 196}, {155, 212}, {171, 228}, {182, 249}, {1, 89}, {2, 90}, {3, 91}, {4, 92}, {5, 93}, {6, 94}, {7, 95}, {32, 120}, {33, 121}, {34, 122}, {35, 123}, {36, 124}, {37, 125}, {38, 126}, {39, 127}, {128, 216}, {129, 217}, {130, 218}, {131, 219}, {132, 220}, {133, 221}, {134, 222}, {135, 223}, {160, 248}, {161, 249}, {162, 250}, {163, 251}, {164, 252}, {165, 253}, {166, 254}, {167, 255}, {1, 88}, {144, 201}, {146, 203}, {148, 205}, {150, 207}, {176, 233}, {145, 202}, {149, 206}, {61, 96}, {63, 98}, {62, 97}, {147, 204}, {56, 91}, {60, 95}, {57, 92}, {59, 94}, {58, 93}, {8, 96}, {9, 97}, {10, 98}, {11, 99}, {12, 100}, {13, 101}, {14, 102}, {15, 103}, {24, 112}, {25, 113}, {26, 114}, {27, 115}, {28, 116}, {29, 117}, {30, 118}, {31, 119}, {136, 224}, {137, 225}, {138, 226}, {139, 227}, {140, 228}, {141, 229}, {142, 230}, {143, 231}, {152, 240}, {153, 241}, {154, 242}, {155, 243}, {156, 244}, {157, 245}, {158, 246}, {159, 247}, {187, 208}, {191, 212}, {55, 90}, {188, 209}, {190, 211}, {54, 89}, {189, 210}, {178, 199}, {184, 205}, {186, 207}, {177, 198}, {185, 206}, {16, 104}, {17, 105}, {18, 106}, {19, 107}, {20, 108}, {21, 109}, {22, 110}, {23, 111}, {144, 232}, {145, 233}, {146, 234}, {147, 235}, {148, 236}, {149, 237}, {150, 238}, {151, 239}, {160, 217}, {162, 219}, {164, 221}, {166, 223}, {4, 127}, {161, 218}, {165, 222}, {179, 200}, {183, 204}, {1, 124}, {3, 126}, {180, 201}, {182, 203}, {2, 125}, {63, 64}, {163, 220}, {181, 202}, {5, 128}, {53, 176}, {7, 130}, {13, 136}, {15, 138}, {21, 144}, {23, 146}, {29, 152}, {31, 154}, {37, 160}, {39, 162}, {45, 168}, {47, 170}, {6, 129}, {14, 137}, {22, 145}, {30, 153}, {38, 161}, {46, 169}, {8, 131}, {12, 135}, {24, 147}, {28, 151}, {40, 163}, {44, 167}, {9, 132}, {11, 134}, {25, 148}, {27, 150}, {41, 164}, {43, 166}, {10, 133}, {26, 149}, {42, 165}, {96, 241}, {98, 243}, {100, 245}, {102, 247}, {104, 249}, {106, 251}, {108, 253}, {110, 255}, {97, 242}, {101, 246}, {105, 250}, {109, 254}, {99, 244}, {107, 252}, {16, 139}, {52, 175}, {20, 143}, {48, 171}, {17, 140}, {19, 142}, {49, 172}, {51, 174}, {18, 141}, {50, 173}, {103, 248}, {40, 128}, {63, 151}, {62, 150}, {61, 149}, {60, 148}, {59, 147}, {58, 146}, {57, 145}, {56, 144}, {41, 129}, {42, 130}, {43, 131}, {44, 132}, {45, 133}, {46, 134}, {47, 135}, {104, 192}, {105, 193}, {106, 194}, {107, 195}, {108, 196}, {109, 197}, {110, 198}, {111, 199}, {120, 208}, {121, 209}, {122, 210}, {123, 211}, {124, 212}, {125, 213}, {126, 214}, {127, 215}, {95, 240}, {90, 235}, {92, 237}, {94, 239}, {89, 234}, {93, 238}, {91, 236}, {48, 136}, {55, 143}, {54, 142}, {53, 141}, {49, 137}, {50, 138}, {51, 139}, {52, 140}, {112, 200}, {113, 201}, {114, 202}, {115, 203}, {116, 204}, {117, 205}, {118, 206}, {119, 207}, {32, 155}, {36, 159}, {33, 156}, {35, 158}, {34, 157}, {127, 184}, {120, 177}, {122, 179}, {124, 181}, {126, 183}, {121, 178}, {125, 182}, {123, 180}, {64, 152}, {71, 159}, {70, 158}, {69, 157}, {68, 156}, {67, 155}, {66, 154}, {65, 153}, {96, 184}, {97, 185}, {98, 186}, {99, 187}, {100, 188}, {101, 189}, {102, 190}, {103, 191}, {72, 160}, {94, 182}, {93, 181}, {92, 180}, {91, 179}, {90, 178}, {89, 177}, {88, 176}, {79, 167}, {78, 166}, {77, 165}, {76, 164}, {75, 163}, {74, 162}, {73, 161}, {95, 183}, {80, 168}, {87, 175}, {86, 174}, {85, 173}, {84, 172}, {83, 171}, {82, 170}, {81, 169}, {111, 256}, {112, 257}, {114, 259}, {116, 261}, {118, 263}, {113, 258}, {117, 262}, {115, 260}, {119, 264}, {168, 256}, {169, 257}, {170, 258}, {171, 259}, {172, 260}, {173, 261}, {174, 262}, {175, 263}, {176, 264}, {189, 256}, {191, 258}, {190, 257}, {192, 259}, {196, 263}, {193, 260}, {195, 262}, {194, 261}, {197, 264}, {235, 256}, {239, 260}, {236, 257}, {238, 259}, {237, 258}, {240, 261}, {242, 263}, {241, 262}, {243, 264} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88)(89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176)(177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264)
b: (2, 88)(3, 87)(4, 86)(5, 85)(6, 84)(7, 83)(8, 82)(9, 81)(10, 80)(11, 79)(12, 78)(13, 77)(14, 76)(15, 75)(16, 74)(17, 73)(18, 72)(19, 71)(20, 70)(21, 69)(22, 68)(23, 67)(24, 66)(25, 65)(26, 64)(27, 63)(28, 62)(29, 61)(30, 60)(31, 59)(32, 58)(33, 57)(34, 56)(35, 55)(36, 54)(37, 53)(38, 52)(39, 51)(40, 50)(41, 49)(42, 48)(43, 47)(44, 46)(89, 124)(90, 123)(91, 122)(92, 121)(93, 120)(94, 119)(95, 118)(96, 117)(97, 116)(98, 115)(99, 114)(100, 113)(101, 112)(102, 111)(103, 110)(104, 109)(105, 108)(106, 107)(125, 176)(126, 175)(127, 174)(128, 173)(129, 172)(130, 171)(131, 170)(132, 169)(133, 168)(134, 167)(135, 166)(136, 165)(137, 164)(138, 163)(139, 162)(140, 161)(141, 160)(142, 159)(143, 158)(144, 157)(145, 156)(146, 155)(147, 154)(148, 153)(149, 152)(150, 151)(177, 181)(178, 180)(182, 264)(183, 263)(184, 262)(185, 261)(186, 260)(187, 259)(188, 258)(189, 257)(190, 256)(191, 255)(192, 254)(193, 253)(194, 252)(195, 251)(196, 250)(197, 249)(198, 248)(199, 247)(200, 246)(201, 245)(202, 244)(203, 243)(204, 242)(205, 241)(206, 240)(207, 239)(208, 238)(209, 237)(210, 236)(211, 235)(212, 234)(213, 233)(214, 232)(215, 231)(216, 230)(217, 229)(218, 228)(219, 227)(220, 226)(221, 225)(222, 224)
c: (2, 89)(3, 177)(4, 120)(5, 85)(6, 173)(7, 261)(8, 116)(9, 81)(10, 169)(11, 257)(12, 112)(13, 77)(14, 165)(15, 253)(16, 108)(17, 73)(18, 161)(19, 249)(20, 104)(21, 69)(22, 157)(23, 245)(24, 100)(25, 65)(26, 153)(27, 241)(28, 96)(29, 61)(30, 149)(31, 237)(32, 92)(33, 57)(34, 145)(35, 233)(36, 176)(37, 53)(38, 141)(39, 229)(40, 172)(41, 49)(42, 137)(43, 225)(44, 168)(46, 133)(47, 221)(48, 164)(50, 129)(51, 217)(52, 160)(54, 125)(55, 213)(56, 156)(58, 121)(59, 209)(60, 152)(62, 117)(63, 205)(64, 148)(66, 113)(67, 201)(68, 144)(70, 109)(71, 197)(72, 140)(74, 105)(75, 193)(76, 136)(78, 101)(79, 189)(80, 132)(82, 97)(83, 185)(84, 128)(86, 93)(87, 181)(88, 124)(90, 234)(91, 244)(94, 230)(95, 240)(98, 226)(99, 236)(102, 222)(103, 232)(106, 218)(107, 228)(110, 214)(111, 224)(114, 210)(115, 220)(118, 206)(119, 216)(122, 202)(123, 212)(126, 198)(127, 208)(130, 194)(131, 204)(134, 190)(135, 200)(138, 186)(139, 196)(142, 182)(143, 192)(146, 178)(147, 188)(150, 262)(151, 184)(154, 258)(155, 180)(158, 254)(159, 264)(162, 250)(163, 260)(166, 246)(167, 256)(170, 242)(171, 252)(174, 238)(175, 248)(179, 223)(183, 219)(187, 215)(191, 211)(195, 207)(199, 203)(227, 263)(231, 259)(235, 255)(239, 251)(243, 247)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 264, 18 ]
264
-1 88 89 2 124
-2 1 90 3 125
-3 2 91 4 126
-4 3 92 5 127
-5 4 93 6 128
-6 5 94 7 129
-7 6 95 8 130
-8 7 96 9 131
-9 132 8 97 10
-10 11 133 9 98
-11 99 12 134 10
-12 11 100 13 135
-13 12 101 14 136
-14 13 102 15 137
-15 14 103 16 138
-16 15 104 17 139
-17 16 105 18 140
-18 17 106 19 141
-19 18 107 20 142
-20 143 19 108 21
-21 22 144 20 109
-22 110 23 145 21
-23 22 111 24 146
-24 23 112 25 147
-25 24 113 26 148
-26 25 114 27 149
-27 26 115 28 150
-28 27 116 29 151
-29 28 117 30 152
-30 29 118 31 153
-31 154 30 119 32
-32 33 155 31 120
-33 121 34 156 32
-34 33 122 35 157
-35 34 123 36 158
-36 35 124 37 159
-37 36 125 38 160
-38 37 126 39 161
-39 38 127 40 162
-40 39 128 41 163
-41 40 129 42 164
-42 165 41 130 43
-43 44 166 42 131
-44 132 45 167 43
-45 44 133 46 168
-46 45 134 47 169
-47 46 135 48 170
-48 47 136 49 171
-49 48 137 50 172
-50 49 138 51 173
-51 50 139 52 174
-52 51 140 53 175
-53 176 52 141 54
-54 55 89 53 142
-55 143 56 90 54
-56 55 144 57 91
-57 56 145 58 92
-58 57 146 59 93
-59 58 147 60 94
-60 59 148 61 95
-61 60 149 62 96
-62 61 150 63 97
-63 62 151 64 98
-64 99 63 152 65
-65 66 100 64 153
-66 154 67 101 65
-67 66 155 68 102
-68 67 156 69 103
-69 68 157 70 104
-70 69 158 71 105
-71 70 159 72 106
-72 71 160 73 107
-73 72 161 74 108
-74 73 162 75 109
-75 110 74 163 76
-76 77 111 75 164
-77 165 78 112 76
-78 77 166 79 113
-79 78 167 80 114
-80 79 168 81 115
-81 80 169 82 116
-82 81 170 83 117
-83 82 171 84 118
-84 83 172 85 119
-85 84 173 86 120
-86 121 85 174 87
-87 88 122 86 175
-88 176 1 123 87
-89 1 177 234 54
-90 55 2 178 235
-91 56 3 179 236
-92 57 4 180 237
-93 58 5 181 238
-94 59 6 182 239
-95 60 7 183 240
-96 61 8 184 241
-97 242 62 9 185
-98 243 63 10 186
-99 11 187 244 64
-100 12 188 245 65
-101 66 13 189 246
-102 67 14 190 247
-103 68 15 191 248
-104 69 16 192 249
-105 70 17 193 250
-106 71 18 194 251
-107 72 19 195 252
-108 253 73 20 196
-109 254 74 21 197
-110 22 198 255 75
-111 23 199 256 76
-112 77 24 200 257
-113 78 25 201 258
-114 79 26 202 259
-115 80 27 203 260
-116 81 28 204 261
-117 82 29 205 262
-118 83 30 206 263
-119 264 84 31 207
-120 177 85 32 208
-121 33 209 178 86
-122 34 210 179 87
-123 88 35 211 180
-124 1 36 212 181
-125 2 37 213 182
-126 3 38 214 183
-127 4 39 215 184
-128 5 40 216 185
-129 6 41 217 186
-130 187 7 42 218
-131 188 8 43 219
-132 44 220 189 9
-133 45 221 190 10
-134 11 46 222 191
-135 12 47 223 192
-136 13 48 224 193
-137 14 49 225 194
-138 15 50 226 195
-139 16 51 227 196
-140 17 52 228 197
-141 198 18 53 229
-142 199 19 54 230
-143 55 231 200 20
-144 56 232 201 21
-145 22 57 233 202
-146 23 58 234 203
-147 24 59 235 204
-148 25 60 236 205
-149 26 61 237 206
-150 27 62 238 207
-151 28 63 239 208
-152 209 29 64 240
-153 210 30 65 241
-154 66 242 211 31
-155 67 243 212 32
-156 33 68 244 213
-157 34 69 245 214
-158 35 70 246 215
-159 36 71 247 216
-160 37 72 248 217
-161 38 73 249 218
-162 39 74 250 219
-163 220 40 75 251
-164 221 41 76 252
-165 77 253 222 42
-166 78 254 223 43
-167 44 79 255 224
-168 45 80 256 225
-169 46 81 257 226
-170 47 82 258 227
-171 48 83 259 228
-172 49 84 260 229
-173 50 85 261 230
-174 231 51 86 262
-175 232 52 87 263
-176 88 264 233 53
-177 198 89 244 120
-178 121 199 90 245
-179 122 200 91 246
-180 123 201 92 247
-181 124 202 93 248
-182 125 203 94 249
-183 126 204 95 250
-184 127 205 96 251
-185 128 206 97 252
-186 253 129 207 98
-187 99 254 130 208
-188 209 100 255 131
-189 132 210 101 256
-190 133 211 102 257
-191 134 212 103 258
-192 135 213 104 259
-193 136 214 105 260
-194 137 215 106 261
-195 138 216 107 262
-196 139 217 108 263
-197 264 140 218 109
-198 110 177 141 219
-199 220 111 178 142
-200 143 221 112 179
-201 144 222 113 180
-202 145 223 114 181
-203 146 224 115 182
-204 147 225 116 183
-205 148 226 117 184
-206 149 227 118 185
-207 150 228 119 186
-208 187 151 229 120
-209 121 188 152 230
-210 231 122 189 153
-211 154 232 123 190
-212 155 233 124 191
-213 156 234 125 192
-214 157 235 126 193
-215 158 236 127 194
-216 159 237 128 195
-217 160 238 129 196
-218 161 239 130 197
-219 198 162 240 131
-220 132 199 163 241
-221 242 133 200 164
-222 165 243 134 201
-223 166 244 135 202
-224 167 245 136 203
-225 168 246 137 204
-226 169 247 138 205
-227 170 248 139 206
-228 171 249 140 207
-229 172 250 141 208
-230 209 173 251 142
-231 143 210 174 252
-232 253 144 211 175
-233 176 254 145 212
-234 89 255 146 213
-235 90 256 147 214
-236 91 257 148 215
-237 92 258 149 216
-238 93 259 150 217
-239 94 260 151 218
-240 95 261 152 219
-241 220 96 262 153
-242 154 221 97 263
-243 264 155 222 98
-244 99 177 156 223
-245 100 178 157 224
-246 101 179 158 225
-247 102 180 159 226
-248 103 181 160 227
-249 104 182 161 228
-250 105 183 162 229
-251 106 184 163 230
-252 231 107 185 164
-253 165 232 108 186
-254 187 166 233 109
-255 110 188 167 234
-256 111 189 168 235
-257 112 190 169 236
-258 113 191 170 237
-259 114 192 171 238
-260 115 193 172 239
-261 116 194 173 240
-262 117 195 174 241
-263 242 118 196 175
-264 176 243 119 197
0

**************