C4graphGraph forms for C4 [ 264, 21 ] = PL(Curtain_33(1,10,23,32,33),[4^33,22^6])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 264, 21 ] = PL(Curtain_33(1,10,23,32,33),[4^33,22^6]).

(I) Following is a form readable by MAGMA:

g:=Graph<264|{ {132, 141}, {128, 141}, {128, 142}, {131, 141}, {129, 151}, {129, 150}, {131, 175}, {130, 179}, {129, 193}, {131, 193}, {132, 193}, {128, 200}, {130, 204}, {128, 228}, {129, 231}, {131, 234}, {5, 133}, {110, 238}, {37, 165}, {14, 140}, {47, 173}, {25, 155}, {86, 212}, {17, 146}, {25, 154}, {64, 195}, {1, 133}, {74, 206}, {88, 220}, {30, 155}, {125, 248}, {116, 241}, {33, 164}, {10, 140}, {93, 219}, {73, 207}, {44, 171}, {54, 177}, {46, 169}, {91, 220}, {4, 140}, {112, 248}, {107, 227}, {29, 149}, {26, 146}, {5, 140}, {117, 252}, {100, 237}, {16, 155}, {108, 231}, {38, 173}, {26, 145}, {76, 199}, {77, 198}, {32, 172}, {103, 235}, {98, 238}, {93, 209}, {78, 194}, {79, 195}, {35, 174}, {63, 178}, {78, 195}, {80, 221}, {59, 181}, {91, 212}, {10, 154}, {120, 232}, {64, 208}, {76, 220}, {52, 165}, {123, 234}, {105, 248}, {97, 240}, {96, 241}, {52, 166}, {121, 235}, {54, 164}, {48, 163}, {62, 173}, {71, 212}, {72, 219}, {19, 135}, {61, 169}, {48, 164}, {84, 192}, {39, 178}, {46, 187}, {73, 220}, {12, 154}, {126, 232}, {47, 185}, {39, 177}, {19, 133}, {88, 207}, {127, 232}, {115, 228}, {89, 206}, {44, 181}, {104, 241}, {72, 209}, {63, 165}, {106, 240}, {60, 167}, {118, 237}, {95, 196}, {6, 154}, {13, 145}, {69, 217}, {33, 188}, {122, 231}, {109, 240}, {41, 180}, {36, 186}, {61, 162}, {119, 232}, {99, 252}, {18, 178}, {113, 209}, {20, 180}, {69, 229}, {68, 229}, {73, 234}, {53, 145}, {104, 204}, {98, 198}, {9, 172}, {112, 213}, {99, 198}, {93, 248}, {55, 146}, {53, 144}, {34, 135}, {72, 237}, {50, 148}, {115, 213}, {97, 199}, {16, 183}, {59, 156}, {50, 149}, {34, 133}, {24, 191}, {22, 177}, {34, 138}, {102, 206}, {51, 155}, {1, 168}, {113, 216}, {111, 198}, {46, 135}, {29, 180}, {27, 178}, {11, 162}, {2, 168}, {114, 216}, {101, 207}, {35, 137}, {3, 168}, {95, 244}, {92, 247}, {15, 163}, {56, 148}, {42, 134}, {91, 246}, {119, 218}, {6, 168}, {94, 240}, {31, 177}, {18, 188}, {65, 239}, {21, 186}, {117, 218}, {107, 196}, {51, 156}, {68, 235}, {32, 144}, {14, 191}, {121, 200}, {100, 213}, {62, 143}, {70, 247}, {84, 229}, {8, 186}, {103, 213}, {71, 245}, {4, 183}, {58, 137}, {69, 246}, {3, 183}, {101, 209}, {94, 234}, {15, 187}, {11, 191}, {86, 226}, {30, 171}, {125, 200}, {116, 193}, {12, 186}, {122, 204}, {120, 206}, {114, 196}, {83, 229}, {11, 188}, {123, 204}, {38, 145}, {35, 148}, {83, 228}, {27, 163}, {119, 207}, {36, 156}, {31, 166}, {109, 212}, {99, 218}, {5, 191}, {61, 135}, {24, 162}, {23, 173}, {20, 174}, {64, 250}, {67, 249}, {75, 241}, {76, 246}, {77, 247}, {87, 237}, {89, 227}, {7, 188}, {127, 196}, {50, 137}, {49, 138}, {24, 163}, {23, 172}, {85, 238}, {7, 187}, {66, 254}, {17, 172}, {101, 216}, {55, 138}, {90, 231}, {21, 171}, {118, 200}, {102, 216}, {74, 244}, {8, 183}, {101, 218}, {67, 252}, {10, 202}, {111, 175}, {96, 160}, {94, 158}, {12, 205}, {32, 225}, {18, 211}, {57, 251}, {91, 153}, {56, 251}, {80, 147}, {15, 203}, {122, 190}, {57, 253}, {66, 134}, {80, 148}, {8, 205}, {79, 138}, {88, 157}, {41, 239}, {118, 176}, {97, 167}, {86, 144}, {44, 235}, {58, 253}, {22, 222}, {123, 179}, {120, 176}, {87, 159}, {2, 203}, {116, 189}, {105, 160}, {96, 169}, {66, 139}, {92, 149}, {1, 203}, {121, 179}, {109, 167}, {38, 236}, {65, 139}, {97, 170}, {115, 184}, {6, 202}, {108, 160}, {102, 170}, {99, 175}, {98, 174}, {7, 203}, {75, 134}, {112, 189}, {108, 161}, {23, 217}, {49, 255}, {83, 157}, {60, 243}, {83, 156}, {3, 211}, {95, 143}, {51, 227}, {36, 244}, {21, 197}, {27, 202}, {42, 251}, {35, 242}, {16, 194}, {43, 249}, {41, 251}, {40, 250}, {65, 147}, {13, 222}, {61, 238}, {26, 201}, {22, 197}, {64, 147}, {42, 254}, {123, 175}, {103, 179}, {100, 176}, {53, 225}, {50, 230}, {92, 136}, {104, 189}, {31, 201}, {104, 190}, {102, 176}, {43, 253}, {37, 243}, {4, 211}, {43, 252}, {42, 253}, {9, 222}, {71, 144}, {89, 142}, {17, 201}, {114, 170}, {9, 208}, {100, 189}, {46, 247}, {68, 157}, {86, 143}, {31, 197}, {47, 245}, {81, 139}, {25, 194}, {45, 246}, {30, 197}, {80, 139}, {82, 137}, {62, 226}, {79, 147}, {90, 134}, {13, 208}, {79, 146}, {45, 243}, {59, 228}, {103, 184}, {9, 233}, {126, 158}, {55, 215}, {89, 185}, {21, 244}, {126, 159}, {120, 153}, {118, 151}, {58, 219}, {54, 215}, {87, 182}, {2, 224}, {116, 150}, {28, 254}, {75, 169}, {92, 190}, {28, 255}, {69, 166}, {77, 174}, {29, 249}, {107, 143}, {4, 225}, {125, 152}, {107, 142}, {56, 221}, {55, 210}, {22, 243}, {16, 245}, {20, 242}, {127, 153}, {110, 136}, {38, 192}, {28, 250}, {76, 170}, {70, 161}, {127, 152}, {95, 184}, {1, 233}, {119, 159}, {112, 152}, {47, 199}, {15, 230}, {19, 250}, {6, 236}, {125, 151}, {114, 152}, {60, 214}, {56, 210}, {39, 205}, {78, 164}, {10, 225}, {94, 181}, {52, 223}, {78, 165}, {5, 233}, {51, 223}, {90, 182}, {13, 224}, {122, 151}, {59, 214}, {48, 221}, {20, 249}, {19, 254}, {12, 226}, {14, 224}, {3, 236}, {113, 158}, {68, 171}, {39, 215}, {43, 219}, {14, 255}, {33, 211}, {63, 205}, {74, 184}, {84, 166}, {74, 185}, {77, 190}, {84, 167}, {27, 239}, {124, 136}, {109, 153}, {106, 158}, {98, 150}, {54, 194}, {45, 217}, {85, 161}, {7, 242}, {53, 192}, {65, 180}, {105, 159}, {85, 162}, {121, 142}, {106, 157}, {17, 233}, {110, 150}, {40, 208}, {11, 242}, {62, 199}, {32, 217}, {26, 224}, {48, 202}, {44, 214}, {40, 210}, {37, 223}, {23, 236}, {110, 149}, {45, 214}, {41, 210}, {37, 222}, {36, 223}, {29, 230}, {25, 226}, {90, 161}, {33, 221}, {60, 192}, {63, 195}, {73, 181}, {2, 255}, {117, 136}, {52, 201}, {30, 227}, {18, 239}, {8, 245}, {70, 187}, {75, 182}, {93, 160}, {24, 230}, {115, 141}, {71, 185}, {72, 182}, {40, 215}, {28, 258}, {34, 264}, {57, 264}, {49, 258}, {57, 257}, {49, 264}, {58, 262}, {67, 263}, {70, 258}, {66, 263}, {67, 260}, {81, 257}, {87, 260}, {82, 262}, {82, 263}, {81, 263}, {82, 260}, {85, 258}, {88, 256}, {81, 264}, {96, 257}, {111, 262}, {106, 256}, {111, 259}, {105, 260}, {108, 257}, {117, 261}, {113, 259}, {124, 261}, {124, 262}, {126, 259}, {124, 259}, {132, 261}, {130, 256}, {132, 256}, {130, 261} }>;

(II) A more general form is to represent the graph as the orbit of {132, 141} under the group generated by the following permutations:

a: (3, 6)(4, 10)(7, 15)(8, 12)(9, 17)(11, 24)(13, 26)(16, 25)(18, 27)(19, 34)(20, 29)(22, 31)(28, 49)(33, 48)(35, 50)(37, 52)(40, 55)(42, 57)(44, 68)(45, 69)(47, 62)(59, 83)(60, 84)(64, 79)(66, 81)(71, 86)(72, 93)(73, 88)(74, 95)(75, 96)(77, 92)(87, 105)(89, 107)(90, 108)(94, 106)(98, 110)(99, 117)(100, 112)(102, 114)(111, 124)(118, 125)(120, 127)(123, 130)(131, 132)(134, 257)(136, 198)(138, 250)(143, 185)(146, 208)(149, 174)(152, 176)(154, 183)(157, 181)(160, 182)(163, 188)(166, 243)(175, 261)(196, 206)(201, 222)(202, 211)(214, 229)(226, 245)(230, 242)(234, 256)(237, 248)(254, 264)
b: (3, 7)(4, 11)(6, 15)(8, 20)(9, 19)(10, 24)(12, 29)(13, 28)(16, 35)(17, 34)(21, 43)(22, 42)(23, 46)(25, 50)(26, 49)(30, 58)(31, 57)(32, 61)(36, 67)(37, 66)(38, 70)(39, 41)(44, 72)(45, 75)(47, 77)(51, 82)(52, 81)(53, 85)(54, 56)(59, 87)(60, 90)(62, 92)(63, 65)(68, 93)(69, 96)(71, 98)(73, 100)(74, 99)(76, 104)(78, 80)(83, 105)(84, 108)(86, 110)(88, 112)(89, 111)(91, 116)(94, 118)(95, 117)(97, 122)(101, 103)(102, 123)(106, 125)(107, 124)(109, 129)(113, 121)(114, 130)(115, 119)(120, 131)(126, 128)(127, 132)(133, 233)(134, 243)(135, 172)(136, 143)(137, 155)(138, 146)(139, 165)(140, 191)(141, 232)(142, 259)(144, 238)(145, 258)(147, 195)(148, 194)(149, 226)(150, 212)(151, 240)(152, 256)(153, 193)(154, 230)(156, 260)(157, 248)(158, 200)(159, 228)(160, 229)(161, 192)(162, 225)(163, 202)(164, 221)(166, 257)(167, 231)(168, 203)(169, 217)(170, 204)(171, 219)(173, 247)(174, 245)(175, 206)(176, 234)(177, 251)(178, 239)(179, 216)(180, 205)(181, 237)(182, 214)(183, 242)(184, 218)(185, 198)(186, 249)(187, 236)(188, 211)(189, 220)(190, 199)(196, 261)(197, 253)(201, 264)(207, 213)(208, 250)(209, 235)(210, 215)(222, 254)(223, 263)(224, 255)(227, 262)(241, 246)(244, 252)
c: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19)(8, 22)(10, 26)(11, 28)(12, 31)(15, 34)(16, 37)(18, 40)(20, 42)(24, 49)(25, 52)(27, 55)(29, 57)(30, 36)(32, 38)(33, 64)(35, 66)(44, 74)(45, 47)(48, 79)(50, 81)(54, 63)(56, 65)(58, 67)(59, 89)(60, 71)(61, 70)(62, 69)(68, 95)(72, 99)(73, 102)(75, 77)(83, 107)(84, 86)(87, 111)(88, 114)(90, 98)(91, 97)(92, 96)(93, 117)(94, 120)(100, 123)(105, 124)(106, 127)(108, 110)(112, 130)(113, 119)(115, 121)(116, 122)(118, 131)(125, 132)(133, 203)(134, 174)(135, 187)(136, 160)(137, 263)(138, 163)(139, 148)(140, 224)(141, 200)(142, 228)(143, 229)(144, 192)(145, 225)(146, 202)(147, 221)(149, 257)(150, 231)(151, 193)(152, 256)(153, 240)(154, 201)(155, 223)(156, 227)(157, 196)(158, 232)(159, 259)(161, 238)(162, 258)(164, 195)(165, 194)(166, 226)(167, 212)(168, 233)(169, 247)(170, 220)(171, 244)(172, 236)(173, 217)(175, 237)(176, 234)(177, 205)(178, 215)(179, 213)(180, 251)(181, 206)(182, 198)(183, 222)(184, 235)(185, 214)(186, 197)(188, 250)(189, 204)(190, 241)(191, 255)(199, 246)(207, 216)(208, 211)(209, 218)(210, 239)(219, 252)(230, 264)(242, 254)(243, 245)(248, 261)(249, 253)(260, 262)
d: (1, 3, 23, 47, 76, 102, 101, 72, 43, 42, 41, 40, 39, 22, 21, 44, 103, 123, 104, 77, 46, 7)(2, 6, 38, 62, 97, 114, 113, 93, 58, 57, 56, 55, 54, 31, 30, 68, 121, 130, 122, 92, 70, 15)(4, 32, 71, 91, 120, 119, 87, 67, 66, 65, 64, 63, 37, 36, 59, 115, 131, 116, 98, 61, 11, 5)(8, 45, 74, 73, 100, 99, 75, 20, 19, 18, 9)(10, 53, 86, 109, 127, 126, 105, 82, 81, 80, 79, 78, 52, 51, 83, 128, 132, 129, 110, 85, 24, 14)(12, 60, 95, 94, 112, 111, 96, 35, 34, 33, 17, 16, 69, 89, 88, 118, 117, 90, 29, 28, 27, 13)(25, 84, 107, 106, 125, 124, 108, 50, 49, 48, 26)(133, 211, 172, 245, 246, 206, 207, 237, 252, 134, 180, 250, 178, 222, 186, 214, 184, 234, 189, 198, 169, 242)(135, 188, 233, 183, 217, 185, 220, 176, 218, 182, 249, 254, 239, 208, 205, 243, 244, 181, 213, 175, 241, 174)(136, 161, 230, 255, 202, 145, 226, 167, 196, 158, 248, 262, 257, 148, 138, 164, 201, 155, 229, 142, 256, 151)(137, 264, 221, 146, 194, 166, 227, 157, 200, 261, 231, 149, 258, 163, 224, 154, 192, 143, 240, 152, 259, 160)(139, 147, 195, 165, 223, 156, 228, 141, 193, 150, 238, 162, 191, 140, 225, 144, 212, 153, 232, 159, 260, 263)(168, 236, 173, 199, 170, 216, 209, 219, 253, 251, 210, 215, 177, 197, 171, 235, 179, 204, 190, 247, 187, 203)
e: (1, 2)(5, 14)(8, 16)(9, 13)(12, 25)(17, 26)(18, 33)(19, 28)(20, 35)(21, 30)(23, 38)(27, 48)(29, 50)(32, 53)(34, 49)(36, 51)(39, 54)(41, 56)(43, 58)(45, 60)(46, 70)(61, 85)(63, 78)(65, 80)(67, 82)(69, 84)(73, 94)(74, 89)(75, 90)(76, 97)(88, 106)(91, 109)(95, 107)(96, 108)(99, 111)(100, 118)(101, 113)(103, 121)(104, 122)(112, 125)(115, 128)(116, 129)(117, 124)(119, 126)(133, 255)(135, 258)(137, 249)(142, 184)(145, 172)(148, 180)(151, 189)(155, 186)(158, 207)(161, 169)(164, 178)(167, 246)(192, 217)(194, 205)(200, 213)(218, 259)(220, 240)(221, 239)(224, 233)(227, 244)(231, 241)(252, 262)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 264, 21 ]
264
-1 133 233 168 203
-2 255 168 224 203
-3 211 168 236 183
-4 211 225 183 140
-5 133 233 191 140
-6 154 168 202 236
-7 187 242 188 203
-8 245 183 205 186
-9 222 233 172 208
-10 154 202 225 140
-11 242 188 191 162
-12 154 226 205 186
-13 145 222 224 208
-14 255 191 224 140
-15 187 203 163 230
-16 155 245 183 194
-17 233 146 201 172
-18 188 178 211 239
-19 133 254 135 250
-20 242 180 249 174
-21 244 171 186 197
-22 177 243 222 197
-23 236 172 173 217
-24 191 162 163 230
-25 154 155 226 194
-26 145 146 201 224
-27 178 202 239 163
-28 254 255 258 250
-29 180 149 249 230
-30 155 171 227 197
-31 166 177 201 197
-32 144 225 172 217
-33 188 221 211 164
-34 264 133 135 138
-35 242 137 148 174
-36 156 244 223 186
-37 165 243 222 223
-38 145 192 236 173
-39 177 178 215 205
-40 210 215 250 208
-41 210 180 239 251
-42 253 254 134 251
-43 253 249 219 252
-44 235 181 214 171
-45 243 246 214 217
-46 187 135 169 247
-47 199 245 173 185
-48 221 202 163 164
-49 264 255 258 138
-50 137 148 149 230
-51 155 156 223 227
-52 165 166 201 223
-53 144 145 192 225
-54 177 215 194 164
-55 210 146 138 215
-56 210 221 148 251
-57 253 264 257 251
-58 253 137 262 219
-59 156 181 214 228
-60 243 167 192 214
-61 135 169 238 162
-62 143 199 226 173
-63 165 178 205 195
-64 147 195 250 208
-65 147 180 139 239
-66 254 134 139 263
-67 249 260 252 263
-68 157 235 171 229
-69 166 246 217 229
-70 187 247 258 161
-71 144 212 245 185
-72 209 182 237 219
-73 220 234 181 207
-74 244 184 206 185
-75 134 169 182 241
-76 220 199 246 170
-77 198 190 247 174
-78 165 194 195 164
-79 146 147 138 195
-80 221 147 148 139
-81 264 257 139 263
-82 137 260 262 263
-83 156 157 228 229
-84 166 167 192 229
-85 258 161 238 162
-86 143 144 212 226
-87 159 182 237 260
-88 220 157 256 207
-89 227 206 185 142
-90 231 134 182 161
-91 220 212 246 153
-92 190 136 247 149
-93 209 160 248 219
-94 234 158 181 240
-95 143 244 184 196
-96 169 257 160 241
-97 199 167 170 240
-98 198 150 238 174
-99 198 218 175 252
-100 176 189 213 237
-101 209 216 207 218
-102 176 170 216 206
-103 179 213 235 184
-104 189 190 204 241
-105 159 160 248 260
-106 157 256 158 240
-107 143 227 196 142
-108 231 257 160 161
-109 167 212 240 153
-110 136 149 150 238
-111 198 259 262 175
-112 189 213 248 152
-113 209 158 259 216
-114 170 216 152 196
-115 213 184 228 141
-116 189 193 150 241
-117 136 261 218 252
-118 176 200 237 151
-119 232 159 207 218
-120 176 232 206 153
-121 200 179 235 142
-122 231 190 204 151
-123 179 234 204 175
-124 136 259 261 262
-125 200 248 151 152
-126 232 158 159 259
-127 232 152 196 153
-128 200 228 141 142
-129 231 193 150 151
-130 179 256 204 261
-131 234 193 141 175
-132 256 193 261 141
-133 1 34 5 19
-134 66 90 42 75
-135 34 46 61 19
-136 110 124 92 117
-137 35 58 82 50
-138 55 34 79 49
-139 66 80 81 65
-140 14 4 5 10
-141 132 115 128 131
-142 121 89 128 107
-143 62 95 107 86
-144 71 53 86 32
-145 13 26 38 53
-146 55 79 26 17
-147 79 80 64 65
-148 56 35 80 50
-149 110 92 50 29
-150 110 116 129 98
-151 122 125 118 129
-152 112 114 125 127
-153 91 127 109 120
-154 12 25 6 10
-155 25 16 51 30
-156 36 59 83 51
-157 88 68 83 106
-158 113 126 94 106
-159 126 105 119 87
-160 93 105 96 108
-161 90 70 85 108
-162 11 24 61 85
-163 24 15 48 27
-164 33 78 48 54
-165 78 37 52 63
-166 69 84 52 31
-167 60 84 97 109
-168 1 2 3 6
-169 46 61 96 75
-170 102 114 97 76
-171 44 68 30 21
-172 23 17 9 32
-173 23 47 38 62
-174 77 35 20 98
-175 99 111 123 131
-176 100 102 118 120
-177 22 39 31 54
-178 27 39 18 63
-179 121 123 103 130
-180 29 41 20 65
-181 44 59 94 73
-182 90 72 75 87
-183 3 4 16 8
-184 103 115 95 74
-185 89 47 71 74
-186 12 36 8 21
-187 46 15 70 7
-188 11 33 7 18
-189 100 112 104 116
-190 77 122 92 104
-191 11 24 14 5
-192 38 60 84 53
-193 132 116 129 131
-194 78 25 16 54
-195 78 79 63 64
-196 114 127 95 107
-197 22 30 31 21
-198 77 99 111 98
-199 47 62 97 76
-200 121 125 128 118
-201 26 17 52 31
-202 48 27 6 10
-203 1 2 15 7
-204 122 123 104 130
-205 12 39 8 63
-206 89 102 74 120
-207 88 101 73 119
-208 13 40 9 64
-209 101 113 93 72
-210 55 56 40 41
-211 33 3 4 18
-212 91 71 86 109
-213 100 112 103 115
-214 44 45 59 60
-215 55 39 40 54
-216 101 102 113 114
-217 23 45 69 32
-218 99 101 117 119
-219 58 93 72 43
-220 88 91 73 76
-221 33 56 80 48
-222 22 13 37 9
-223 36 37 51 52
-224 2 13 14 26
-225 4 53 10 32
-226 12 25 62 86
-227 89 51 30 107
-228 59 115 83 128
-229 68 69 83 84
-230 24 15 50 29
-231 122 90 129 108
-232 126 127 119 120
-233 1 5 17 9
-234 123 94 73 131
-235 44 121 68 103
-236 23 3 38 6
-237 100 72 118 87
-238 110 61 85 98
-239 27 18 41 65
-240 94 106 97 109
-241 104 116 96 75
-242 11 35 7 20
-243 22 45 37 60
-244 36 95 74 21
-245 47 16 71 8
-246 45 69 91 76
-247 77 46 70 92
-248 112 125 93 105
-249 67 29 20 43
-250 28 40 19 64
-251 56 57 41 42
-252 99 67 117 43
-253 57 58 42 43
-254 66 28 19 42
-255 2 14 49 28
-256 88 132 106 130
-257 57 81 96 108
-258 70 49 28 85
-259 111 113 124 126
-260 67 82 105 87
-261 132 124 117 130
-262 111 58 124 82
-263 66 67 81 82
-264 34 57 81 49
0

**************