C4graphGraph forms for C4 [ 264, 26 ] = SDD(W(33,2))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 264, 26 ] = SDD(W(33,2)).

(I) Following is a form readable by MAGMA:

g:=Graph<264|{ {132, 214}, {128, 217}, {131, 235}, {129, 232}, {132, 239}, {129, 237}, {130, 236}, {128, 242}, {131, 241}, {130, 240}, {131, 247}, {128, 245}, {130, 248}, {131, 249}, {128, 254}, {129, 255}, {67, 195}, {127, 255}, {115, 243}, {17, 144}, {46, 175}, {23, 150}, {4, 134}, {116, 246}, {15, 141}, {14, 140}, {11, 137}, {5, 135}, {57, 187}, {18, 145}, {121, 250}, {120, 251}, {43, 168}, {30, 157}, {74, 201}, {1, 133}, {41, 173}, {60, 184}, {44, 169}, {125, 248}, {124, 249}, {106, 239}, {96, 229}, {63, 186}, {1, 135}, {122, 252}, {114, 244}, {54, 176}, {33, 167}, {13, 139}, {12, 138}, {1, 134}, {96, 231}, {45, 170}, {31, 152}, {29, 154}, {8, 143}, {2, 133}, {85, 210}, {3, 139}, {88, 208}, {52, 188}, {31, 151}, {6, 142}, {7, 142}, {122, 243}, {94, 215}, {39, 174}, {29, 148}, {24, 146}, {1, 138}, {124, 247}, {113, 250}, {112, 251}, {53, 190}, {30, 149}, {24, 147}, {3, 136}, {2, 137}, {61, 182}, {62, 181}, {67, 200}, {41, 165}, {100, 232}, {66, 206}, {42, 167}, {125, 240}, {124, 241}, {123, 246}, {2, 140}, {126, 240}, {108, 226}, {6, 136}, {3, 141}, {31, 144}, {115, 252}, {114, 253}, {91, 212}, {68, 203}, {32, 176}, {116, 228}, {115, 227}, {114, 226}, {72, 216}, {84, 196}, {7, 150}, {125, 236}, {119, 230}, {111, 254}, {108, 253}, {24, 137}, {9, 152}, {63, 174}, {80, 193}, {62, 172}, {127, 237}, {109, 255}, {71, 213}, {10, 153}, {121, 234}, {117, 230}, {110, 253}, {83, 192}, {84, 199}, {81, 197}, {82, 198}, {10, 159}, {118, 227}, {107, 254}, {36, 177}, {2, 148}, {120, 238}, {50, 164}, {40, 190}, {8, 158}, {5, 147}, {4, 146}, {3, 149}, {57, 175}, {61, 171}, {90, 205}, {127, 232}, {124, 235}, {102, 241}, {96, 247}, {11, 147}, {108, 244}, {87, 207}, {51, 171}, {48, 168}, {44, 180}, {73, 209}, {74, 210}, {82, 202}, {9, 144}, {122, 227}, {107, 242}, {88, 193}, {11, 146}, {77, 212}, {6, 156}, {38, 188}, {7, 157}, {10, 145}, {113, 234}, {22, 141}, {13, 150}, {86, 205}, {23, 139}, {117, 233}, {99, 255}, {98, 254}, {97, 253}, {96, 252}, {93, 193}, {81, 205}, {82, 206}, {85, 201}, {70, 219}, {118, 235}, {4, 154}, {119, 233}, {112, 238}, {107, 245}, {45, 179}, {9, 151}, {5, 155}, {8, 151}, {123, 228}, {90, 197}, {16, 143}, {16, 176}, {22, 183}, {110, 207}, {51, 146}, {25, 187}, {91, 249}, {90, 248}, {7, 164}, {50, 150}, {118, 210}, {10, 175}, {105, 204}, {89, 252}, {26, 191}, {14, 171}, {73, 236}, {75, 238}, {80, 245}, {8, 174}, {121, 223}, {120, 222}, {93, 251}, {92, 250}, {23, 177}, {76, 234}, {25, 190}, {81, 246}, {13, 165}, {114, 218}, {93, 245}, {92, 244}, {91, 243}, {39, 143}, {28, 180}, {27, 179}, {26, 178}, {69, 237}, {5, 172}, {101, 204}, {51, 154}, {27, 178}, {21, 188}, {19, 186}, {17, 184}, {81, 248}, {9, 163}, {53, 159}, {52, 158}, {20, 190}, {12, 166}, {69, 239}, {6, 173}, {126, 213}, {22, 189}, {18, 185}, {15, 164}, {80, 251}, {90, 246}, {11, 166}, {73, 228}, {74, 231}, {54, 152}, {113, 223}, {112, 222}, {97, 207}, {89, 247}, {76, 226}, {4, 171}, {100, 203}, {50, 157}, {21, 186}, {20, 187}, {19, 188}, {70, 233}, {79, 224}, {16, 160}, {39, 151}, {37, 149}, {19, 163}, {18, 162}, {17, 161}, {16, 161}, {46, 159}, {61, 140}, {80, 225}, {15, 189}, {111, 221}, {110, 220}, {107, 217}, {100, 214}, {98, 208}, {27, 169}, {26, 168}, {23, 165}, {22, 164}, {85, 231}, {19, 160}, {42, 153}, {20, 167}, {77, 249}, {99, 215}, {21, 160}, {51, 134}, {79, 250}, {20, 162}, {109, 219}, {108, 218}, {101, 211}, {34, 148}, {28, 170}, {21, 163}, {40, 159}, {46, 153}, {71, 240}, {82, 229}, {14, 182}, {99, 219}, {94, 230}, {38, 158}, {37, 157}, {36, 156}, {35, 155}, {34, 154}, {33, 153}, {32, 152}, {15, 183}, {12, 181}, {39, 158}, {72, 241}, {75, 242}, {105, 211}, {109, 215}, {25, 162}, {79, 244}, {13, 177}, {118, 202}, {106, 214}, {93, 225}, {92, 224}, {89, 229}, {50, 142}, {31, 163}, {97, 220}, {24, 166}, {102, 216}, {89, 231}, {25, 167}, {77, 243}, {46, 145}, {111, 208}, {98, 221}, {41, 233}, {14, 204}, {94, 156}, {36, 230}, {78, 140}, {95, 155}, {30, 216}, {86, 144}, {12, 203}, {78, 137}, {29, 213}, {126, 182}, {65, 136}, {30, 212}, {103, 173}, {65, 139}, {35, 232}, {78, 133}, {28, 208}, {95, 147}, {65, 141}, {63, 242}, {29, 211}, {68, 138}, {47, 224}, {64, 143}, {49, 225}, {60, 236}, {58, 235}, {102, 183}, {62, 239}, {63, 238}, {57, 234}, {62, 237}, {66, 145}, {65, 149}, {26, 207}, {55, 224}, {60, 228}, {95, 135}, {56, 225}, {58, 227}, {78, 148}, {27, 192}, {57, 226}, {17, 205}, {18, 206}, {28, 193}, {59, 229}, {64, 160}, {66, 162}, {83, 179}, {64, 161}, {83, 178}, {68, 166}, {104, 138}, {42, 201}, {92, 191}, {70, 165}, {76, 175}, {44, 200}, {32, 197}, {56, 221}, {75, 174}, {87, 178}, {91, 189}, {33, 198}, {54, 209}, {84, 179}, {33, 201}, {87, 191}, {43, 195}, {35, 203}, {58, 210}, {43, 194}, {103, 142}, {45, 196}, {69, 172}, {45, 199}, {53, 223}, {52, 222}, {67, 169}, {55, 220}, {70, 173}, {42, 198}, {88, 180}, {49, 221}, {43, 199}, {85, 185}, {47, 194}, {104, 133}, {52, 217}, {60, 209}, {86, 184}, {104, 134}, {44, 195}, {104, 135}, {103, 136}, {94, 177}, {53, 218}, {47, 192}, {56, 200}, {58, 202}, {64, 176}, {69, 181}, {77, 189}, {79, 191}, {32, 209}, {37, 212}, {34, 211}, {59, 202}, {61, 204}, {68, 181}, {71, 182}, {73, 184}, {75, 186}, {40, 218}, {88, 170}, {48, 194}, {41, 219}, {36, 215}, {95, 172}, {54, 197}, {48, 195}, {47, 220}, {74, 185}, {35, 214}, {55, 194}, {49, 196}, {59, 206}, {34, 213}, {55, 192}, {48, 199}, {40, 223}, {67, 180}, {76, 187}, {86, 161}, {38, 222}, {49, 200}, {83, 169}, {66, 185}, {103, 156}, {56, 196}, {37, 216}, {59, 198}, {84, 170}, {38, 217}, {100, 155}, {72, 183}, {87, 168}, {71, 256}, {72, 257}, {101, 261}, {98, 259}, {97, 258}, {101, 262}, {99, 260}, {102, 257}, {109, 260}, {105, 261}, {111, 259}, {110, 258}, {106, 263}, {106, 260}, {105, 262}, {119, 263}, {116, 261}, {115, 257}, {117, 263}, {112, 259}, {113, 258}, {116, 256}, {127, 264}, {120, 259}, {125, 262}, {123, 256}, {122, 257}, {121, 258}, {117, 264}, {123, 261}, {126, 256}, {119, 264}, {132, 260}, {132, 263}, {130, 262}, {129, 264} }>;

(II) A more general form is to represent the graph as the orbit of {132, 214} under the group generated by the following permutations:

a: (112, 120)
b: (59, 74)(82, 85)(185, 206)(198, 201)(202, 210)(229, 231)
c: (15, 22)
d: (49, 56)
e: (12, 68)
f: (63, 75)
g: (89, 96)
h: (127, 129)
m: (101, 105)
n1: (98, 111)
a1: (97, 110)
b1: (107, 112)(120, 128)(217, 222)(238, 242)(245, 251)(254, 259)
c1: (80, 98)(93, 111)(193, 208)(221, 225)(245, 254)(251, 259)
d1: (33, 42)
e1: (15, 30)(22, 37)(141, 149)(157, 164)(183, 216)(189, 212)
f1: (10, 20)(25, 46)(145, 162)(153, 167)(159, 190)(175, 187)
g1: (58, 89)(96, 118)(202, 229)(210, 231)(227, 252)(235, 247)
h1: (17, 32)(54, 86)(144, 152)(161, 176)(184, 209)(197, 205)
m1: (117, 119)
n2: (99, 117)(109, 119)(215, 230)(219, 233)(255, 264)(260, 263)
a2: (115, 122)
b2: (20, 25)
c2: (40, 57)(53, 76)(159, 175)(187, 190)(218, 226)(223, 234)
d2: (47, 55)
e2: (19, 21)
f2: (38, 63)(52, 75)(158, 174)(186, 188)(217, 242)(222, 238)
g2: (5, 12)(68, 95)(135, 138)(147, 166)(155, 203)(172, 181)
h2: (45, 84)
m2: (71, 101)(105, 126)(182, 204)(211, 213)(240, 262)(256, 261)
n3: (14, 29)(34, 61)(140, 148)(154, 171)(182, 213)(204, 211)
a3: (16, 64)
b3: (30, 37)
c3: (125, 130)
d3: (7, 50)
e3: (28, 49)(56, 88)(170, 196)(180, 200)(193, 225)(208, 221)
f3: (38, 52)
g3: (26, 47)(55, 87)(168, 194)(178, 192)(191, 224)(207, 220)
h3: (18, 33)(42, 66)(145, 153)(162, 167)(185, 201)(198, 206)
m3: (81, 90)
n4: (2, 4)(51, 78)(133, 134)(137, 146)(140, 171)(148, 154)
a4: (36, 41)(70, 94)(156, 173)(165, 177)(215, 219)(230, 233)
b4: (99, 109)
c4: (11, 24)
d4: (44, 45)(67, 84)(169, 179)(170, 180)(195, 199)(196, 200)
e4: (1, 2)(3, 8)(4, 11)(5, 14)(6, 9)(7, 19)(10, 26)(12, 29)(13, 16)(15, 38)(17, 36)(18, 27)(20, 47)(21, 50)(22, 52)(23, 64)(24, 51)(25, 55)(28, 58)(30, 63)(31, 103)(32, 41)(33, 43)(34, 68)(35, 71)(37, 75)(39, 65)(40, 79)(42, 48)(44, 59)(45, 74)(46, 87)(49, 89)(53, 92)(54, 70)(56, 96)(57, 97)(60, 99)(61, 95)(62, 101)(66, 83)(67, 82)(69, 105)(72, 107)(73, 109)(76, 110)(77, 112)(78, 104)(80, 115)(81, 117)(84, 85)(86, 94)(88, 118)(90, 119)(91, 120)(93, 122)(98, 124)(100, 126)(102, 128)(106, 116)(111, 131)(123, 132)(125, 127)(129, 130)(134, 137)(135, 140)(136, 151)(138, 148)(139, 143)(141, 158)(142, 163)(144, 156)(145, 178)(147, 171)(149, 174)(150, 160)(152, 173)(153, 168)(154, 166)(155, 182)(157, 186)(159, 191)(161, 177)(162, 192)(164, 188)(165, 176)(167, 194)(169, 206)(170, 210)(172, 204)(175, 207)(179, 185)(180, 202)(181, 211)(183, 217)(184, 215)(187, 220)(189, 222)(190, 224)(193, 227)(195, 198)(196, 231)(197, 233)(199, 201)(200, 229)(203, 213)(205, 230)(208, 235)(209, 219)(212, 238)(214, 256)(216, 242)(218, 244)(221, 247)(223, 250)(225, 252)(226, 253)(228, 260)(232, 240)(234, 258)(236, 255)(237, 262)(239, 261)(241, 254)(243, 251)(245, 257)(246, 263)(248, 264)(249, 259)
f4: (4, 51)
g4: (115, 124)(122, 131)(227, 235)(241, 257)(243, 249)(247, 252)
h4: (77, 91)
m4: (72, 77)(91, 102)(183, 189)(212, 216)(241, 249)(243, 257)
n5: (113, 121)
a5: (6, 13)(23, 103)(136, 139)(142, 150)(156, 177)(165, 173)
b5: (60, 81)(73, 90)(184, 205)(197, 209)(228, 246)(236, 248)
c5: (62, 69)
d5: (35, 62)(69, 100)(155, 172)(181, 203)(214, 239)(232, 237)
e5: (40, 53)
f5: (108, 113)(114, 121)(218, 223)(226, 234)(244, 250)(253, 258)
g5: (106, 127)(129, 132)(214, 232)(237, 239)(255, 260)(263, 264)
h5: (9, 16)(31, 64)(143, 151)(144, 161)(152, 176)(160, 163)
m5: (57, 76)
n6: (3, 7)(50, 65)(136, 142)(139, 150)(141, 164)(149, 157)
a6: (79, 97)(92, 110)(191, 207)(220, 224)(244, 253)(250, 258)
b6: (8, 19)(21, 39)(143, 160)(151, 163)(158, 188)(174, 186)
c6: (27, 43)(48, 83)(168, 178)(169, 195)(179, 199)(192, 194)
d6: (74, 85)
e6: (60, 73)
f6: (41, 70)
g6: (79, 92)
h6: (32, 54)
m6: (116, 125)(123, 130)(228, 236)(240, 256)(246, 248)(261, 262)
n7: (29, 34)
a7: (13, 23)
b7: (124, 131)
c7: (80, 93)
d7: (43, 48)
e7: (2, 5)(3, 9)(4, 12)(6, 17)(7, 16)(8, 15)(10, 27)(13, 32)(14, 35)(18, 44)(19, 30)(20, 43)(21, 37)(22, 39)(23, 54)(25, 48)(26, 40)(28, 59)(29, 62)(31, 65)(33, 45)(34, 69)(36, 60)(38, 72)(41, 81)(42, 84)(46, 83)(47, 57)(49, 74)(50, 64)(51, 68)(52, 102)(53, 87)(55, 76)(56, 85)(58, 80)(61, 100)(63, 77)(66, 67)(70, 90)(71, 106)(73, 94)(75, 91)(78, 95)(79, 108)(82, 88)(86, 103)(89, 98)(92, 114)(93, 118)(96, 111)(97, 113)(99, 116)(101, 127)(105, 129)(107, 115)(109, 123)(110, 121)(112, 124)(117, 125)(119, 130)(120, 131)(122, 128)(126, 132)(133, 135)(134, 138)(136, 144)(137, 147)(139, 152)(140, 155)(141, 151)(142, 161)(143, 164)(145, 169)(146, 166)(148, 172)(149, 163)(150, 176)(153, 179)(154, 181)(156, 184)(157, 160)(158, 183)(159, 178)(162, 195)(165, 197)(167, 199)(168, 190)(170, 198)(171, 203)(173, 205)(174, 189)(175, 192)(177, 209)(180, 206)(182, 214)(185, 200)(186, 212)(187, 194)(188, 216)(191, 218)(193, 202)(196, 201)(204, 232)(207, 223)(208, 229)(210, 225)(211, 237)(213, 239)(215, 228)(217, 257)(219, 246)(220, 234)(221, 231)(222, 241)(224, 226)(227, 245)(230, 236)(233, 248)(235, 251)(238, 249)(240, 263)(242, 243)(247, 259)(250, 253)(252, 254)(255, 261)(256, 260)(262, 264)
f7: (116, 123)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 264, 26 ]
264
-1 133 134 135 138
-2 133 137 148 140
-3 136 149 139 141
-4 154 134 146 171
-5 155 135 147 172
-6 156 136 173 142
-7 157 150 142 164
-8 143 158 151 174
-9 144 151 152 163
-10 145 159 153 175
-11 166 146 147 137
-12 166 181 203 138
-13 165 177 139 150
-14 171 182 204 140
-15 189 183 141 164
-16 143 176 160 161
-17 144 161 205 184
-18 145 162 206 185
-19 188 160 163 186
-20 187 167 190 162
-21 188 160 163 186
-22 189 183 141 164
-23 165 177 139 150
-24 166 146 147 137
-25 187 167 190 162
-26 178 168 191 207
-27 178 179 169 192
-28 180 170 193 208
-29 154 211 213 148
-30 157 212 149 216
-31 144 151 152 163
-32 176 209 152 197
-33 198 167 201 153
-34 154 211 213 148
-35 155 232 203 214
-36 177 156 215 230
-37 157 212 149 216
-38 188 222 158 217
-39 143 158 151 174
-40 190 223 159 218
-41 165 233 173 219
-42 198 167 201 153
-43 199 168 194 195
-44 200 169 180 195
-45 199 179 170 196
-46 145 159 153 175
-47 220 224 192 194
-48 199 168 194 195
-49 221 200 225 196
-50 157 150 142 164
-51 154 134 146 171
-52 188 222 158 217
-53 190 223 159 218
-54 176 209 152 197
-55 220 224 192 194
-56 221 200 225 196
-57 187 234 226 175
-58 210 202 235 227
-59 198 202 206 229
-60 209 236 184 228
-61 171 182 204 140
-62 181 237 172 239
-63 242 238 174 186
-64 143 176 160 161
-65 136 149 139 141
-66 145 162 206 185
-67 200 169 180 195
-68 166 181 203 138
-69 181 237 172 239
-70 165 233 173 219
-71 256 213 182 240
-72 257 183 216 241
-73 209 236 184 228
-74 231 210 201 185
-75 242 238 174 186
-76 187 234 226 175
-77 243 189 212 249
-78 133 137 148 140
-79 244 191 224 250
-80 245 225 193 251
-81 246 248 205 197
-82 198 202 206 229
-83 178 179 169 192
-84 199 179 170 196
-85 231 210 201 185
-86 144 161 205 184
-87 178 168 191 207
-88 180 170 193 208
-89 231 247 229 252
-90 246 248 205 197
-91 243 189 212 249
-92 244 191 224 250
-93 245 225 193 251
-94 177 156 215 230
-95 155 135 147 172
-96 231 247 229 252
-97 220 253 258 207
-98 221 254 259 208
-99 255 215 260 219
-100 155 232 203 214
-101 211 204 261 262
-102 257 183 216 241
-103 156 136 173 142
-104 133 134 135 138
-105 211 204 261 262
-106 214 260 239 263
-107 242 254 245 217
-108 253 244 226 218
-109 255 215 260 219
-110 220 253 258 207
-111 221 254 259 208
-112 222 259 238 251
-113 223 234 258 250
-114 253 244 226 218
-115 243 257 227 252
-116 256 246 228 261
-117 264 233 230 263
-118 210 202 235 227
-119 264 233 230 263
-120 222 259 238 251
-121 223 234 258 250
-122 243 257 227 252
-123 256 246 228 261
-124 235 247 249 241
-125 236 248 240 262
-126 256 213 182 240
-127 264 232 255 237
-128 242 254 245 217
-129 264 232 255 237
-130 236 248 240 262
-131 235 247 249 241
-132 214 260 239 263
-133 1 78 2 104
-134 1 4 104 51
-135 1 5 104 95
-136 3 103 6 65
-137 11 78 2 24
-138 1 12 68 104
-139 23 13 3 65
-140 78 2 14 61
-141 22 3 15 65
-142 103 6 50 7
-143 16 39 8 64
-144 17 9 31 86
-145 66 46 18 10
-146 11 24 4 51
-147 11 24 5 95
-148 34 78 2 29
-149 3 37 30 65
-150 23 13 50 7
-151 39 8 9 31
-152 9 31 32 54
-153 33 46 42 10
-154 34 4 29 51
-155 100 35 5 95
-156 36 103 6 94
-157 37 50 7 30
-158 38 39 8 52
-159 46 40 53 10
-160 16 19 64 21
-161 16 17 64 86
-162 66 25 18 20
-163 19 9 31 21
-164 22 15 50 7
-165 23 13 70 41
-166 11 12 24 68
-167 33 25 20 42
-168 26 48 43 87
-169 44 67 27 83
-170 88 45 28 84
-171 14 4 61 51
-172 69 5 62 95
-173 70 103 6 41
-174 39 8 63 75
-175 46 57 10 76
-176 16 64 32 54
-177 23 13 36 94
-178 26 27 83 87
-179 45 27 83 84
-180 44 88 67 28
-181 12 68 69 62
-182 14 71 126 61
-183 22 102 15 72
-184 60 17 73 86
-185 66 18 74 85
-186 19 63 75 21
-187 57 25 20 76
-188 38 19 52 21
-189 22 77 91 15
-190 25 40 20 53
-191 79 26 92 87
-192 55 47 27 83
-193 88 80 93 28
-194 55 47 48 43
-195 44 67 48 43
-196 45 56 49 84
-197 90 81 32 54
-198 33 59 82 42
-199 45 48 84 43
-200 44 56 67 49
-201 33 74 85 42
-202 58 59 82 118
-203 12 100 35 68
-204 101 14 61 105
-205 90 81 17 86
-206 66 59 82 18
-207 110 26 97 87
-208 88 111 28 98
-209 60 73 32 54
-210 58 74 85 118
-211 34 101 105 29
-212 77 91 37 30
-213 34 71 126 29
-214 132 100 35 106
-215 99 36 94 109
-216 102 37 72 30
-217 38 128 52 107
-218 114 40 53 108
-219 99 70 41 109
-220 55 110 47 97
-221 56 111 49 98
-222 112 38 52 120
-223 121 113 40 53
-224 55 79 47 92
-225 56 80 49 93
-226 57 114 108 76
-227 122 58 115 118
-228 123 60 116 73
-229 89 59 82 96
-230 36 94 117 119
-231 89 74 85 96
-232 100 35 127 129
-233 70 117 41 119
-234 121 57 113 76
-235 58 124 118 131
-236 125 60 73 130
-237 69 127 62 129
-238 112 63 75 120
-239 132 69 62 106
-240 125 71 126 130
-241 102 124 72 131
-242 128 63 107 75
-243 77 122 91 115
-244 79 92 114 108
-245 80 93 128 107
-246 90 123 81 116
-247 89 124 96 131
-248 90 81 125 130
-249 77 91 124 131
-250 121 79 113 92
-251 112 80 93 120
-252 89 122 115 96
-253 110 114 97 108
-254 111 128 107 98
-255 99 127 129 109
-256 123 71 126 116
-257 122 102 115 72
-258 110 121 113 97
-259 111 112 98 120
-260 99 132 106 109
-261 101 123 105 116
-262 101 125 105 130
-263 132 106 117 119
-264 127 117 129 119
0

**************