[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 265, 2 ] =
C_265(1,54).
(I) Following is a form readable by MAGMA:
g:=Graph<265|{ {2, 3}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256,
257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245},
{242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230,
231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219},
{216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204,
205}, {202, 203}, {200, 201}, {110, 111}, {108, 109}, {106, 107}, {104, 105},
{102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88,
89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72,
73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {4,
5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21},
{22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37},
{38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53},
{54, 55}, {56, 57}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121},
{122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134,
135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147},
{148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160,
161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173},
{174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186,
187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199},
{1, 2}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242},
{237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213,
214}, {209, 210}, {205, 206}, {201, 202}, {109, 110}, {105, 106}, {101, 102},
{97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70},
{65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22},
{25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54},
{113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137,
138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162},
{165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189,
190}, {193, 194}, {197, 198}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235,
236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {107, 108}, {99, 100},
{91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28},
{35, 36}, {43, 44}, {51, 52}, {115, 116}, {123, 124}, {131, 132}, {139, 140},
{147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195,
196}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {103, 104}, {87,
88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {119, 120}, {135, 136}, {151, 152},
{167, 168}, {183, 184}, {199, 200}, {15, 16}, {239, 240}, {207, 208}, {111,
112}, {79, 80}, {47, 48}, {143, 144}, {175, 176}, {1, 55}, {201, 255}, {200,
254}, {73, 127}, {72, 126}, {65, 119}, {64, 118}, {8, 62}, {9, 63}, {128, 182},
{129, 183}, {136, 190}, {137, 191}, {192, 246}, {193, 247}, {2, 56}, {71, 125},
{70, 124}, {67, 121}, {66, 120}, {3, 57}, {6, 60}, {7, 61}, {130, 184}, {131,
185}, {134, 188}, {135, 189}, {194, 248}, {195, 249}, {198, 252}, {199, 253},
{4, 58}, {69, 123}, {68, 122}, {5, 59}, {132, 186}, {133, 187}, {196, 250},
{197, 251}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {10, 64}, {63, 117},
{62, 116}, {59, 113}, {58, 112}, {11, 65}, {14, 68}, {15, 69}, {26, 80}, {27,
81}, {30, 84}, {31, 85}, {42, 96}, {43, 97}, {46, 100}, {47, 101}, {138, 192},
{139, 193}, {142, 196}, {143, 197}, {154, 208}, {155, 209}, {158, 212}, {159,
213}, {170, 224}, {171, 225}, {174, 228}, {175, 229}, {186, 240}, {187, 241},
{190, 244}, {191, 245}, {12, 66}, {61, 115}, {60, 114}, {13, 67}, {28, 82}, {29,
83}, {44, 98}, {45, 99}, {140, 194}, {141, 195}, {156, 210}, {157, 211}, {172,
226}, {173, 227}, {188, 242}, {189, 243}, {16, 70}, {57, 111}, {17, 71}, {24,
78}, {25, 79}, {48, 102}, {49, 103}, {56, 110}, {144, 198}, {145, 199}, {152,
206}, {153, 207}, {176, 230}, {177, 231}, {184, 238}, {185, 239}, {18, 72}, {19,
73}, {22, 76}, {23, 77}, {50, 104}, {51, 105}, {54, 108}, {55, 109}, {146, 200},
{147, 201}, {150, 204}, {151, 205}, {178, 232}, {179, 233}, {182, 236}, {183,
237}, {20, 74}, {21, 75}, {52, 106}, {53, 107}, {148, 202}, {149, 203}, {180,
234}, {181, 235}, {32, 86}, {33, 87}, {40, 94}, {41, 95}, {160, 214}, {161,
215}, {168, 222}, {169, 223}, {34, 88}, {35, 89}, {38, 92}, {39, 93}, {162,
216}, {163, 217}, {166, 220}, {167, 221}, {36, 90}, {37, 91}, {164, 218}, {165,
219}, {63, 64}, {191, 192}, {74, 128}, {110, 164}, {107, 161}, {106, 160}, {95,
149}, {94, 148}, {91, 145}, {90, 144}, {79, 133}, {78, 132}, {75, 129}, {111,
165}, {122, 176}, {123, 177}, {126, 180}, {127, 181}, {76, 130}, {109, 163},
{108, 162}, {93, 147}, {92, 146}, {77, 131}, {124, 178}, {125, 179}, {4, 215},
{8, 219}, {12, 223}, {32, 243}, {36, 247}, {40, 251}, {44, 255}, {1, 212}, {3,
214}, {9, 220}, {11, 222}, {33, 244}, {35, 246}, {41, 252}, {43, 254}, {80,
134}, {89, 143}, {88, 142}, {81, 135}, {112, 166}, {113, 167}, {120, 174}, {121,
175}, {2, 213}, {10, 221}, {34, 245}, {42, 253}, {82, 136}, {87, 141}, {86,
140}, {83, 137}, {114, 168}, {115, 169}, {118, 172}, {119, 173}, {5, 216}, {7,
218}, {37, 248}, {39, 250}, {84, 138}, {85, 139}, {116, 170}, {117, 171}, {6,
217}, {38, 249}, {13, 224}, {15, 226}, {29, 240}, {31, 242}, {14, 225}, {30,
241}, {16, 227}, {20, 231}, {24, 235}, {28, 239}, {17, 228}, {19, 230}, {25,
236}, {27, 238}, {96, 150}, {105, 159}, {104, 158}, {97, 151}, {18, 229}, {26,
237}, {98, 152}, {103, 157}, {102, 156}, {99, 153}, {21, 232}, {23, 234}, {100,
154}, {101, 155}, {22, 233}, {127, 128}, {1, 265}, {45, 256}, {47, 258}, {46,
257}, {48, 259}, {52, 263}, {49, 260}, {51, 262}, {50, 261}, {53, 264}, {54,
265}, {202, 256}, {207, 261}, {206, 260}, {203, 257}, {204, 258}, {205, 259},
{208, 262}, {209, 263}, {210, 264}, {211, 265}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 55)(3, 109)(4, 163)(5, 217)(7, 60)(8, 114)(9, 168)(10, 222)(12, 65)(13,
119)(14, 173)(15, 227)(17, 70)(18, 124)(19, 178)(20, 232)(22, 75)(23, 129)(24,
183)(25, 237)(27, 80)(28, 134)(29, 188)(30, 242)(32, 85)(33, 139)(34, 193)(35,
247)(37, 90)(38, 144)(39, 198)(40, 252)(42, 95)(43, 149)(44, 203)(45, 257)(47,
100)(48, 154)(49, 208)(50, 262)(52, 105)(53, 159)(54, 213)(57, 110)(58, 164)(59,
218)(62, 115)(63, 169)(64, 223)(67, 120)(68, 174)(69, 228)(72, 125)(73, 179)(74,
233)(77, 130)(78, 184)(79, 238)(82, 135)(83, 189)(84, 243)(87, 140)(88, 194)(89,
248)(92, 145)(93, 199)(94, 253)(97, 150)(98, 204)(99, 258)(102, 155)(103,
209)(104, 263)(107, 160)(108, 214)(112, 165)(113, 219)(117, 170)(118, 224)(122,
175)(123, 229)(127, 180)(128, 234)(132, 185)(133, 239)(137, 190)(138, 244)(142,
195)(143, 249)(147, 200)(148, 254)(152, 205)(153, 259)(157, 210)(158, 264)(162,
215)(167, 220)(172, 225)(177, 230)(182, 235)(187, 240)(192, 245)(197, 250)(202,
255)(207, 260)(212, 265)
c: (2, 212)(3, 158)(4, 104)(5, 50)(6, 261)(7, 207)(8, 153)(9, 99)(10, 45)(11,
256)(12, 202)(13, 148)(14, 94)(15, 40)(16, 251)(17, 197)(18, 143)(19, 89)(20,
35)(21, 246)(22, 192)(23, 138)(24, 84)(25, 30)(26, 241)(27, 187)(28, 133)(29,
79)(31, 236)(32, 182)(33, 128)(34, 74)(36, 231)(37, 177)(38, 123)(39, 69)(41,
226)(42, 172)(43, 118)(44, 64)(46, 221)(47, 167)(48, 113)(49, 59)(51, 216)(52,
162)(53, 108)(55, 265)(56, 211)(57, 157)(58, 103)(60, 260)(61, 206)(62, 152)(63,
98)(65, 255)(66, 201)(67, 147)(68, 93)(70, 250)(71, 196)(72, 142)(73, 88)(75,
245)(76, 191)(77, 137)(78, 83)(80, 240)(81, 186)(82, 132)(85, 235)(86, 181)(87,
127)(90, 230)(91, 176)(92, 122)(95, 225)(96, 171)(97, 117)(100, 220)(101,
166)(102, 112)(105, 215)(106, 161)(109, 264)(110, 210)(111, 156)(114, 259)(115,
205)(116, 151)(119, 254)(120, 200)(121, 146)(124, 249)(125, 195)(126, 141)(129,
244)(130, 190)(131, 136)(134, 239)(135, 185)(139, 234)(140, 180)(144, 229)(145,
175)(149, 224)(150, 170)(154, 219)(155, 165)(159, 214)(163, 263)(164, 209)(168,
258)(169, 204)(173, 253)(174, 199)(178, 248)(179, 194)(183, 243)(184, 189)(188,
238)(193, 233)(198, 228)(203, 223)(208, 218)(217, 262)(222, 257)(227, 252)(232,
247)(237, 242)
C4[ 265, 2 ]
265
-1 55 265 2 212
-2 1 56 3 213
-3 2 57 4 214
-4 3 58 5 215
-5 4 59 6 216
-6 5 60 7 217
-7 6 61 8 218
-8 7 62 9 219
-9 220 8 63 10
-10 11 221 9 64
-11 12 222 10 65
-12 11 66 13 223
-13 12 67 14 224
-14 13 68 15 225
-15 14 69 16 226
-16 15 70 17 227
-17 16 71 18 228
-18 17 72 19 229
-19 18 73 20 230
-20 231 19 74 21
-21 22 232 20 75
-22 23 233 21 76
-23 22 77 24 234
-24 23 78 25 235
-25 24 79 26 236
-26 25 80 27 237
-27 26 81 28 238
-28 27 82 29 239
-29 28 83 30 240
-30 29 84 31 241
-31 242 30 85 32
-32 33 243 31 86
-33 34 244 32 87
-34 33 88 35 245
-35 34 89 36 246
-36 35 90 37 247
-37 36 91 38 248
-38 37 92 39 249
-39 38 93 40 250
-40 39 94 41 251
-41 40 95 42 252
-42 253 41 96 43
-43 44 254 42 97
-44 45 255 43 98
-45 44 99 46 256
-46 45 100 47 257
-47 46 101 48 258
-48 47 102 49 259
-49 48 103 50 260
-50 49 104 51 261
-51 50 105 52 262
-52 51 106 53 263
-53 264 52 107 54
-54 55 265 53 108
-55 1 56 54 109
-56 55 110 2 57
-57 56 111 3 58
-58 57 112 4 59
-59 58 113 5 60
-60 59 114 6 61
-61 60 115 7 62
-62 61 116 8 63
-63 62 117 9 64
-64 63 118 10 65
-65 11 66 64 119
-66 12 67 65 120
-67 66 121 13 68
-68 67 122 14 69
-69 68 123 15 70
-70 69 124 16 71
-71 70 125 17 72
-72 71 126 18 73
-73 72 127 19 74
-74 73 128 20 75
-75 74 129 21 76
-76 22 77 75 130
-77 23 78 76 131
-78 77 132 24 79
-79 78 133 25 80
-80 79 134 26 81
-81 80 135 27 82
-82 81 136 28 83
-83 82 137 29 84
-84 83 138 30 85
-85 84 139 31 86
-86 85 140 32 87
-87 33 88 86 141
-88 34 89 87 142
-89 88 143 35 90
-90 89 144 36 91
-91 90 145 37 92
-92 91 146 38 93
-93 92 147 39 94
-94 93 148 40 95
-95 94 149 41 96
-96 95 150 42 97
-97 96 151 43 98
-98 44 99 97 152
-99 45 100 98 153
-100 99 154 46 101
-101 100 155 47 102
-102 101 156 48 103
-103 102 157 49 104
-104 103 158 50 105
-105 104 159 51 106
-106 105 160 52 107
-107 106 161 53 108
-108 107 162 54 109
-109 55 110 108 163
-110 56 111 109 164
-111 110 165 57 112
-112 111 166 58 113
-113 112 167 59 114
-114 113 168 60 115
-115 114 169 61 116
-116 115 170 62 117
-117 116 171 63 118
-118 117 172 64 119
-119 118 173 65 120
-120 66 121 119 174
-121 67 122 120 175
-122 121 176 68 123
-123 122 177 69 124
-124 123 178 70 125
-125 124 179 71 126
-126 125 180 72 127
-127 126 181 73 128
-128 127 182 74 129
-129 128 183 75 130
-130 129 184 76 131
-131 77 132 130 185
-132 78 133 131 186
-133 132 187 79 134
-134 133 188 80 135
-135 134 189 81 136
-136 135 190 82 137
-137 136 191 83 138
-138 137 192 84 139
-139 138 193 85 140
-140 139 194 86 141
-141 140 195 87 142
-142 88 143 141 196
-143 89 144 142 197
-144 143 198 90 145
-145 144 199 91 146
-146 145 200 92 147
-147 146 201 93 148
-148 147 202 94 149
-149 148 203 95 150
-150 149 204 96 151
-151 150 205 97 152
-152 151 206 98 153
-153 99 154 152 207
-154 100 155 153 208
-155 154 209 101 156
-156 155 210 102 157
-157 156 211 103 158
-158 157 212 104 159
-159 158 213 105 160
-160 159 214 106 161
-161 160 215 107 162
-162 161 216 108 163
-163 162 217 109 164
-164 110 165 163 218
-165 111 166 164 219
-166 165 220 112 167
-167 166 221 113 168
-168 167 222 114 169
-169 168 223 115 170
-170 169 224 116 171
-171 170 225 117 172
-172 171 226 118 173
-173 172 227 119 174
-174 173 228 120 175
-175 121 176 174 229
-176 122 177 175 230
-177 176 231 123 178
-178 177 232 124 179
-179 178 233 125 180
-180 179 234 126 181
-181 180 235 127 182
-182 181 236 128 183
-183 182 237 129 184
-184 183 238 130 185
-185 184 239 131 186
-186 132 187 185 240
-187 133 188 186 241
-188 187 242 134 189
-189 188 243 135 190
-190 189 244 136 191
-191 190 245 137 192
-192 191 246 138 193
-193 192 247 139 194
-194 193 248 140 195
-195 194 249 141 196
-196 195 250 142 197
-197 143 198 196 251
-198 144 199 197 252
-199 198 253 145 200
-200 199 254 146 201
-201 200 255 147 202
-202 201 256 148 203
-203 202 257 149 204
-204 203 258 150 205
-205 204 259 151 206
-206 205 260 152 207
-207 206 261 153 208
-208 154 209 207 262
-209 155 210 208 263
-210 209 264 156 211
-211 210 265 157 212
-212 1 211 158 213
-213 2 212 159 214
-214 3 213 160 215
-215 4 214 161 216
-216 5 215 162 217
-217 6 216 163 218
-218 7 217 164 219
-219 165 220 8 218
-220 166 221 9 219
-221 220 167 222 10
-222 11 221 168 223
-223 12 222 169 224
-224 13 223 170 225
-225 14 224 171 226
-226 15 225 172 227
-227 16 226 173 228
-228 17 227 174 229
-229 18 228 175 230
-230 176 231 19 229
-231 177 232 20 230
-232 231 178 233 21
-233 22 232 179 234
-234 23 233 180 235
-235 24 234 181 236
-236 25 235 182 237
-237 26 236 183 238
-238 27 237 184 239
-239 28 238 185 240
-240 29 239 186 241
-241 187 242 30 240
-242 188 243 31 241
-243 242 189 244 32
-244 33 243 190 245
-245 34 244 191 246
-246 35 245 192 247
-247 36 246 193 248
-248 37 247 194 249
-249 38 248 195 250
-250 39 249 196 251
-251 40 250 197 252
-252 198 253 41 251
-253 199 254 42 252
-254 253 200 255 43
-255 44 254 201 256
-256 45 255 202 257
-257 46 256 203 258
-258 47 257 204 259
-259 48 258 205 260
-260 49 259 206 261
-261 50 260 207 262
-262 51 261 208 263
-263 209 264 52 262
-264 210 265 53 263
-265 264 1 211 54
0