[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 265, 3 ] =
C_265(1,83).
(I) Following is a form readable by MAGMA:
g:=Graph<265|{ {2, 3}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256,
257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245},
{242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230,
231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219},
{216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204,
205}, {202, 203}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91},
{88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75},
{72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59},
{4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20,
21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36,
37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52,
53}, {54, 55}, {56, 57}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110,
111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123},
{124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136,
137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149},
{150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162,
163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175},
{176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188,
189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200, 201},
{1, 2}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242},
{237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213,
214}, {209, 210}, {205, 206}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82},
{77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10},
{13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42},
{45, 46}, {49, 50}, {53, 54}, {101, 102}, {105, 106}, {109, 110}, {113, 114},
{117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141,
142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166},
{169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193,
194}, {197, 198}, {201, 202}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235,
236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {99, 100}, {91, 92}, {83,
84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43,
44}, {51, 52}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147,
148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196},
{7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {87, 88}, {71, 72}, {23,
24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167,
168}, {183, 184}, {199, 200}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47,
48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159,
160}, {4, 87}, {8, 91}, {12, 95}, {32, 115}, {36, 119}, {40, 123}, {44, 127},
{128, 211}, {132, 215}, {136, 219}, {140, 223}, {160, 243}, {164, 247}, {168,
251}, {172, 255}, {1, 84}, {3, 86}, {9, 92}, {11, 94}, {33, 116}, {35, 118},
{41, 124}, {43, 126}, {129, 212}, {131, 214}, {137, 220}, {139, 222}, {161,
244}, {163, 246}, {169, 252}, {171, 254}, {2, 85}, {10, 93}, {34, 117}, {42,
125}, {130, 213}, {138, 221}, {162, 245}, {170, 253}, {5, 88}, {7, 90}, {37,
120}, {39, 122}, {133, 216}, {135, 218}, {165, 248}, {167, 250}, {6, 89}, {38,
121}, {134, 217}, {166, 249}, {13, 96}, {15, 98}, {29, 112}, {31, 114}, {141,
224}, {143, 226}, {157, 240}, {159, 242}, {14, 97}, {30, 113}, {142, 225}, {158,
241}, {16, 99}, {20, 103}, {24, 107}, {28, 111}, {144, 227}, {148, 231}, {152,
235}, {156, 239}, {17, 100}, {19, 102}, {25, 108}, {27, 110}, {145, 228}, {147,
230}, {153, 236}, {155, 238}, {18, 101}, {26, 109}, {146, 229}, {154, 237}, {21,
104}, {23, 106}, {149, 232}, {151, 234}, {22, 105}, {63, 64}, {150, 233}, {191,
192}, {45, 128}, {63, 146}, {61, 144}, {47, 130}, {109, 192}, {111, 194}, {125,
208}, {127, 210}, {46, 129}, {62, 145}, {110, 193}, {126, 209}, {48, 131}, {60,
143}, {56, 139}, {52, 135}, {112, 195}, {116, 199}, {120, 203}, {124, 207}, {49,
132}, {59, 142}, {57, 140}, {51, 134}, {113, 196}, {115, 198}, {121, 204}, {123,
206}, {1, 183}, {73, 255}, {72, 254}, {65, 247}, {64, 246}, {8, 190}, {9, 191},
{50, 133}, {58, 141}, {114, 197}, {122, 205}, {2, 184}, {71, 253}, {70, 252},
{67, 249}, {66, 248}, {3, 185}, {6, 188}, {7, 189}, {53, 136}, {55, 138}, {117,
200}, {119, 202}, {4, 186}, {69, 251}, {68, 250}, {5, 187}, {54, 137}, {118,
201}, {10, 192}, {63, 245}, {62, 244}, {59, 241}, {58, 240}, {11, 193}, {14,
196}, {15, 197}, {26, 208}, {27, 209}, {30, 212}, {31, 213}, {42, 224}, {43,
225}, {46, 228}, {47, 229}, {12, 194}, {61, 243}, {60, 242}, {13, 195}, {28,
210}, {29, 211}, {44, 226}, {45, 227}, {64, 147}, {96, 179}, {76, 159}, {72,
155}, {68, 151}, {100, 183}, {104, 187}, {108, 191}, {65, 148}, {99, 182}, {97,
180}, {75, 158}, {73, 156}, {67, 150}, {105, 188}, {107, 190}, {16, 198}, {57,
239}, {56, 238}, {17, 199}, {24, 206}, {25, 207}, {48, 230}, {49, 231}, {66,
149}, {98, 181}, {74, 157}, {106, 189}, {18, 200}, {19, 201}, {22, 204}, {23,
205}, {50, 232}, {51, 233}, {54, 236}, {55, 237}, {69, 152}, {71, 154}, {101,
184}, {103, 186}, {20, 202}, {21, 203}, {52, 234}, {53, 235}, {70, 153}, {102,
185}, {77, 160}, {95, 178}, {93, 176}, {79, 162}, {78, 161}, {94, 177}, {80,
163}, {92, 175}, {88, 171}, {84, 167}, {81, 164}, {91, 174}, {89, 172}, {83,
166}, {32, 214}, {33, 215}, {40, 222}, {41, 223}, {82, 165}, {90, 173}, {34,
216}, {35, 217}, {38, 220}, {39, 221}, {85, 168}, {87, 170}, {36, 218}, {37,
219}, {86, 169}, {127, 128}, {1, 265}, {74, 256}, {79, 261}, {78, 260}, {75,
257}, {76, 258}, {77, 259}, {80, 262}, {81, 263}, {82, 264}, {83, 265}, {173,
256}, {175, 258}, {174, 257}, {176, 259}, {180, 263}, {177, 260}, {179, 262},
{178, 261}, {181, 264}, {182, 265}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 84, 265, 183)(3, 167, 264, 100)(4, 250, 263, 17)(5, 68, 262, 199)(6, 151,
261, 116)(7, 234, 260, 33)(8, 52, 259, 215)(9, 135, 258, 132)(10, 218, 257,
49)(11, 36, 256, 231)(12, 119, 255, 148)(13, 202, 254, 65)(14, 20, 253, 247)(15,
103, 252, 164)(16, 186, 251, 81)(18, 87, 249, 180)(19, 170, 248, 97)(21, 71,
246, 196)(22, 154, 245, 113)(23, 237, 244, 30)(24, 55, 243, 212)(25, 138, 242,
129)(26, 221, 241, 46)(27, 39, 240, 228)(28, 122, 239, 145)(29, 205, 238,
62)(31, 106, 236, 161)(32, 189, 235, 78)(34, 90, 233, 177)(35, 173, 232, 94)(37,
74, 230, 193)(38, 157, 229, 110)(40, 58, 227, 209)(41, 141, 226, 126)(42, 224,
225, 43)(44, 125, 223, 142)(45, 208, 222, 59)(47, 109, 220, 158)(48, 192, 219,
75)(50, 93, 217, 174)(51, 176, 216, 91)(53, 77, 214, 190)(54, 160, 213, 107)(56,
61, 211, 206)(57, 144, 210, 123)(60, 128, 207, 139)(63, 112, 204, 155)(64, 195,
203, 72)(66, 96, 201, 171)(67, 179, 200, 88)(69, 80, 198, 187)(70, 163, 197,
104)(73, 147, 194, 120)(76, 131, 191, 136)(79, 115, 188, 152)(82, 99, 185,
168)(83, 182, 184, 85)(86, 166, 181, 101)(89, 150, 178, 117)(92, 134, 175,
133)(95, 118, 172, 149)(98, 102, 169, 165)(105, 153, 162, 114)(108, 137, 159,
130)(111, 121, 156, 146)(124, 140, 143, 127)
C4[ 265, 3 ]
265
-1 265 2 84 183
-2 1 3 85 184
-3 2 4 86 185
-4 3 5 87 186
-5 88 187 4 6
-6 89 188 5 7
-7 90 189 6 8
-8 91 190 7 9
-9 92 191 8 10
-10 11 93 192 9
-11 12 94 193 10
-12 11 13 95 194
-13 12 14 96 195
-14 13 15 97 196
-15 14 16 98 197
-16 99 198 15 17
-17 100 199 16 18
-18 101 200 17 19
-19 102 201 18 20
-20 103 202 19 21
-21 22 104 203 20
-22 23 105 204 21
-23 22 24 106 205
-24 23 25 107 206
-25 24 26 108 207
-26 25 27 109 208
-27 110 209 26 28
-28 111 210 27 29
-29 112 211 28 30
-30 113 212 29 31
-31 114 213 30 32
-32 33 115 214 31
-33 34 116 215 32
-34 33 35 117 216
-35 34 36 118 217
-36 35 37 119 218
-37 36 38 120 219
-38 121 220 37 39
-39 122 221 38 40
-40 123 222 39 41
-41 124 223 40 42
-42 125 224 41 43
-43 44 126 225 42
-44 45 127 226 43
-45 44 46 128 227
-46 45 47 129 228
-47 46 48 130 229
-48 47 49 131 230
-49 132 231 48 50
-50 133 232 49 51
-51 134 233 50 52
-52 135 234 51 53
-53 136 235 52 54
-54 55 137 236 53
-55 56 138 237 54
-56 55 57 139 238
-57 56 58 140 239
-58 57 59 141 240
-59 58 60 142 241
-60 143 242 59 61
-61 144 243 60 62
-62 145 244 61 63
-63 146 245 62 64
-64 147 246 63 65
-65 66 148 247 64
-66 67 149 248 65
-67 66 68 150 249
-68 67 69 151 250
-69 68 70 152 251
-70 69 71 153 252
-71 154 253 70 72
-72 155 254 71 73
-73 156 255 72 74
-74 157 256 73 75
-75 158 257 74 76
-76 77 159 258 75
-77 78 160 259 76
-78 77 79 161 260
-79 78 80 162 261
-80 79 81 163 262
-81 80 82 164 263
-82 165 264 81 83
-83 166 265 82 84
-84 1 167 83 85
-85 2 168 84 86
-86 3 169 85 87
-87 88 4 170 86
-88 89 5 171 87
-89 88 90 6 172
-90 89 91 7 173
-91 90 92 8 174
-92 91 93 9 175
-93 176 92 94 10
-94 11 177 93 95
-95 12 178 94 96
-96 13 179 95 97
-97 14 180 96 98
-98 99 15 181 97
-99 100 16 182 98
-100 99 101 17 183
-101 100 102 18 184
-102 101 103 19 185
-103 102 104 20 186
-104 187 103 105 21
-105 22 188 104 106
-106 23 189 105 107
-107 24 190 106 108
-108 25 191 107 109
-109 110 26 192 108
-110 111 27 193 109
-111 110 112 28 194
-112 111 113 29 195
-113 112 114 30 196
-114 113 115 31 197
-115 198 114 116 32
-116 33 199 115 117
-117 34 200 116 118
-118 35 201 117 119
-119 36 202 118 120
-120 121 37 203 119
-121 122 38 204 120
-122 121 123 39 205
-123 122 124 40 206
-124 123 125 41 207
-125 124 126 42 208
-126 209 125 127 43
-127 44 210 126 128
-128 45 211 127 129
-129 46 212 128 130
-130 47 213 129 131
-131 132 48 214 130
-132 133 49 215 131
-133 132 134 50 216
-134 133 135 51 217
-135 134 136 52 218
-136 135 137 53 219
-137 220 136 138 54
-138 55 221 137 139
-139 56 222 138 140
-140 57 223 139 141
-141 58 224 140 142
-142 143 59 225 141
-143 144 60 226 142
-144 143 145 61 227
-145 144 146 62 228
-146 145 147 63 229
-147 146 148 64 230
-148 231 147 149 65
-149 66 232 148 150
-150 67 233 149 151
-151 68 234 150 152
-152 69 235 151 153
-153 154 70 236 152
-154 155 71 237 153
-155 154 156 72 238
-156 155 157 73 239
-157 156 158 74 240
-158 157 159 75 241
-159 242 158 160 76
-160 77 243 159 161
-161 78 244 160 162
-162 79 245 161 163
-163 80 246 162 164
-164 165 81 247 163
-165 166 82 248 164
-166 165 167 83 249
-167 166 168 84 250
-168 167 169 85 251
-169 168 170 86 252
-170 253 169 171 87
-171 88 254 170 172
-172 89 255 171 173
-173 90 256 172 174
-174 91 257 173 175
-175 176 92 258 174
-176 177 93 259 175
-177 176 178 94 260
-178 177 179 95 261
-179 178 180 96 262
-180 179 181 97 263
-181 264 180 182 98
-182 99 265 181 183
-183 1 100 182 184
-184 2 101 183 185
-185 3 102 184 186
-186 187 4 103 185
-187 188 5 104 186
-188 187 189 6 105
-189 188 190 7 106
-190 189 191 8 107
-191 190 192 9 108
-192 191 193 10 109
-193 11 110 192 194
-194 12 111 193 195
-195 13 112 194 196
-196 14 113 195 197
-197 198 15 114 196
-198 199 16 115 197
-199 198 200 17 116
-200 199 201 18 117
-201 200 202 19 118
-202 201 203 20 119
-203 202 204 21 120
-204 22 121 203 205
-205 23 122 204 206
-206 24 123 205 207
-207 25 124 206 208
-208 209 26 125 207
-209 210 27 126 208
-210 209 211 28 127
-211 210 212 29 128
-212 211 213 30 129
-213 212 214 31 130
-214 213 215 32 131
-215 33 132 214 216
-216 34 133 215 217
-217 35 134 216 218
-218 36 135 217 219
-219 220 37 136 218
-220 221 38 137 219
-221 220 222 39 138
-222 221 223 40 139
-223 222 224 41 140
-224 223 225 42 141
-225 224 226 43 142
-226 44 143 225 227
-227 45 144 226 228
-228 46 145 227 229
-229 47 146 228 230
-230 231 48 147 229
-231 232 49 148 230
-232 231 233 50 149
-233 232 234 51 150
-234 233 235 52 151
-235 234 236 53 152
-236 235 237 54 153
-237 55 154 236 238
-238 56 155 237 239
-239 57 156 238 240
-240 58 157 239 241
-241 242 59 158 240
-242 243 60 159 241
-243 242 244 61 160
-244 243 245 62 161
-245 244 246 63 162
-246 245 247 64 163
-247 246 248 65 164
-248 66 165 247 249
-249 67 166 248 250
-250 68 167 249 251
-251 69 168 250 252
-252 253 70 169 251
-253 254 71 170 252
-254 253 255 72 171
-255 254 256 73 172
-256 255 257 74 173
-257 256 258 75 174
-258 257 259 76 175
-259 77 176 258 260
-260 78 177 259 261
-261 79 178 260 262
-262 80 179 261 263
-263 264 81 180 262
-264 265 82 181 263
-265 264 1 83 182
0