C4graphGraph forms for C4 [ 266, 2 ] = C_266(1,113)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 266, 2 ] = C_266(1,113).

(I) Following is a form readable by MAGMA:

g:=Graph<266|{ {2, 3}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {1, 2}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {2, 115}, {4, 117}, {6, 119}, {8, 121}, {10, 123}, {12, 125}, {14, 127}, {128, 241}, {130, 243}, {132, 245}, {134, 247}, {136, 249}, {138, 251}, {140, 253}, {142, 255}, {1, 114}, {5, 118}, {9, 122}, {13, 126}, {129, 242}, {133, 246}, {137, 250}, {141, 254}, {3, 116}, {11, 124}, {131, 244}, {139, 252}, {7, 120}, {191, 192}, {63, 64}, {135, 248}, {15, 128}, {79, 192}, {63, 176}, {31, 144}, {47, 160}, {95, 208}, {111, 224}, {127, 240}, {16, 129}, {88, 201}, {86, 199}, {84, 197}, {82, 195}, {80, 193}, {62, 175}, {60, 173}, {58, 171}, {56, 169}, {18, 131}, {20, 133}, {22, 135}, {24, 137}, {26, 139}, {28, 141}, {30, 143}, {48, 161}, {50, 163}, {52, 165}, {54, 167}, {90, 203}, {92, 205}, {94, 207}, {112, 225}, {114, 227}, {116, 229}, {118, 231}, {120, 233}, {122, 235}, {124, 237}, {126, 239}, {17, 130}, {89, 202}, {85, 198}, {81, 194}, {61, 174}, {57, 170}, {21, 134}, {25, 138}, {29, 142}, {49, 162}, {53, 166}, {93, 206}, {113, 226}, {117, 230}, {121, 234}, {125, 238}, {19, 132}, {83, 196}, {59, 172}, {27, 140}, {51, 164}, {91, 204}, {115, 228}, {123, 236}, {2, 155}, {70, 223}, {68, 221}, {66, 219}, {64, 217}, {4, 157}, {6, 159}, {32, 185}, {34, 187}, {36, 189}, {38, 191}, {96, 249}, {98, 251}, {100, 253}, {102, 255}, {1, 154}, {69, 222}, {65, 218}, {5, 158}, {33, 186}, {37, 190}, {97, 250}, {101, 254}, {3, 156}, {87, 200}, {67, 220}, {23, 136}, {35, 188}, {55, 168}, {99, 252}, {119, 232}, {7, 160}, {87, 240}, {79, 232}, {71, 224}, {15, 168}, {23, 176}, {31, 184}, {95, 248}, {8, 161}, {88, 241}, {78, 231}, {76, 229}, {74, 227}, {72, 225}, {10, 163}, {12, 165}, {14, 167}, {24, 177}, {26, 179}, {28, 181}, {30, 183}, {90, 243}, {92, 245}, {94, 247}, {9, 162}, {89, 242}, {77, 230}, {73, 226}, {13, 166}, {25, 178}, {29, 182}, {93, 246}, {11, 164}, {75, 228}, {27, 180}, {91, 244}, {32, 145}, {34, 147}, {36, 149}, {38, 151}, {40, 153}, {42, 155}, {44, 157}, {46, 159}, {96, 209}, {98, 211}, {100, 213}, {102, 215}, {104, 217}, {106, 219}, {108, 221}, {110, 223}, {33, 146}, {37, 150}, {41, 154}, {45, 158}, {97, 210}, {101, 214}, {105, 218}, {109, 222}, {35, 148}, {43, 156}, {99, 212}, {107, 220}, {16, 169}, {86, 239}, {84, 237}, {82, 235}, {80, 233}, {18, 171}, {20, 173}, {22, 175}, {17, 170}, {85, 238}, {81, 234}, {21, 174}, {19, 172}, {83, 236}, {39, 152}, {103, 216}, {39, 192}, {63, 216}, {55, 208}, {47, 200}, {40, 193}, {62, 215}, {60, 213}, {58, 211}, {56, 209}, {42, 195}, {44, 197}, {46, 199}, {41, 194}, {61, 214}, {57, 210}, {45, 198}, {43, 196}, {59, 212}, {64, 177}, {78, 191}, {76, 189}, {74, 187}, {72, 185}, {70, 183}, {68, 181}, {66, 179}, {65, 178}, {77, 190}, {73, 186}, {69, 182}, {67, 180}, {75, 188}, {48, 201}, {50, 203}, {52, 205}, {54, 207}, {49, 202}, {53, 206}, {51, 204}, {71, 184}, {127, 128}, {1, 266}, {103, 256}, {111, 264}, {104, 257}, {106, 259}, {108, 261}, {110, 263}, {105, 258}, {109, 262}, {107, 260}, {112, 265}, {113, 266}, {143, 256}, {144, 257}, {146, 259}, {148, 261}, {150, 263}, {152, 265}, {145, 258}, {149, 262}, {153, 266}, {147, 260}, {151, 264}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 114)(3, 227)(4, 74)(5, 187)(6, 34)(7, 147)(8, 260)(9, 107)(10, 220)(11, 67)(12, 180)(13, 27)(14, 140)(15, 253)(16, 100)(17, 213)(18, 60)(19, 173)(21, 133)(22, 246)(23, 93)(24, 206)(25, 53)(26, 166)(28, 126)(29, 239)(30, 86)(31, 199)(32, 46)(33, 159)(35, 119)(36, 232)(37, 79)(38, 192)(40, 152)(41, 265)(42, 112)(43, 225)(44, 72)(45, 185)(47, 145)(48, 258)(49, 105)(50, 218)(51, 65)(52, 178)(54, 138)(55, 251)(56, 98)(57, 211)(59, 171)(61, 131)(62, 244)(63, 91)(64, 204)(66, 164)(68, 124)(69, 237)(70, 84)(71, 197)(73, 157)(75, 117)(76, 230)(78, 190)(80, 150)(81, 263)(82, 110)(83, 223)(85, 183)(87, 143)(88, 256)(89, 103)(90, 216)(92, 176)(94, 136)(95, 249)(97, 209)(99, 169)(101, 129)(102, 242)(104, 202)(106, 162)(108, 122)(109, 235)(111, 195)(113, 155)(116, 228)(118, 188)(120, 148)(121, 261)(123, 221)(125, 181)(127, 141)(128, 254)(130, 214)(132, 174)(135, 247)(137, 207)(139, 167)(142, 240)(144, 200)(146, 160)(149, 233)(151, 193)(154, 266)(156, 226)(158, 186)(161, 259)(163, 219)(165, 179)(168, 252)(170, 212)(175, 245)(177, 205)(182, 238)(184, 198)(189, 231)(194, 264)(196, 224)(201, 257)(203, 217)(208, 250)(215, 243)(222, 236)(234, 262)(241, 255)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266)
c: (2, 154)(3, 41)(4, 194)(5, 81)(6, 234)(7, 121)(9, 161)(10, 48)(11, 201)(12, 88)(13, 241)(14, 128)(16, 168)(17, 55)(18, 208)(19, 95)(20, 248)(21, 135)(23, 175)(24, 62)(25, 215)(26, 102)(27, 255)(28, 142)(30, 182)(31, 69)(32, 222)(33, 109)(34, 262)(35, 149)(37, 189)(38, 76)(39, 229)(40, 116)(42, 156)(44, 196)(45, 83)(46, 236)(47, 123)(49, 163)(51, 203)(52, 90)(53, 243)(54, 130)(56, 170)(58, 210)(59, 97)(60, 250)(61, 137)(63, 177)(65, 217)(66, 104)(67, 257)(68, 144)(70, 184)(72, 224)(73, 111)(74, 264)(75, 151)(77, 191)(79, 231)(80, 118)(82, 158)(84, 198)(86, 238)(87, 125)(89, 165)(91, 205)(93, 245)(94, 132)(96, 172)(98, 212)(100, 252)(101, 139)(103, 179)(105, 219)(107, 259)(108, 146)(110, 186)(112, 226)(114, 266)(115, 153)(117, 193)(119, 233)(122, 160)(124, 200)(126, 240)(129, 167)(131, 207)(133, 247)(136, 174)(138, 214)(140, 254)(143, 181)(145, 221)(147, 261)(150, 188)(152, 228)(157, 195)(159, 235)(164, 202)(166, 242)(171, 209)(173, 249)(178, 216)(180, 256)(185, 223)(187, 263)(192, 230)(199, 237)(206, 244)(213, 251)(220, 258)(227, 265)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 266, 2 ]
266
-1 154 2 266 114
-2 1 155 3 115
-3 2 156 4 116
-4 3 157 5 117
-5 4 158 6 118
-6 5 159 7 119
-7 6 160 8 120
-8 121 7 161 9
-9 122 8 162 10
-10 11 123 9 163
-11 12 124 10 164
-12 11 165 13 125
-13 12 166 14 126
-14 13 167 15 127
-15 14 168 16 128
-16 15 169 17 129
-17 16 170 18 130
-18 17 171 19 131
-19 132 18 172 20
-20 133 19 173 21
-21 22 134 20 174
-22 23 135 21 175
-23 22 176 24 136
-24 23 177 25 137
-25 24 178 26 138
-26 25 179 27 139
-27 26 180 28 140
-28 27 181 29 141
-29 28 182 30 142
-30 143 29 183 31
-31 144 30 184 32
-32 33 145 31 185
-33 34 146 32 186
-34 33 187 35 147
-35 34 188 36 148
-36 35 189 37 149
-37 36 190 38 150
-38 37 191 39 151
-39 38 192 40 152
-40 39 193 41 153
-41 154 40 194 42
-42 155 41 195 43
-43 44 156 42 196
-44 45 157 43 197
-45 44 198 46 158
-46 45 199 47 159
-47 46 200 48 160
-48 47 201 49 161
-49 48 202 50 162
-50 49 203 51 163
-51 50 204 52 164
-52 165 51 205 53
-53 166 52 206 54
-54 55 167 53 207
-55 56 168 54 208
-56 55 209 57 169
-57 56 210 58 170
-58 57 211 59 171
-59 58 212 60 172
-60 59 213 61 173
-61 60 214 62 174
-62 61 215 63 175
-63 176 62 216 64
-64 177 63 217 65
-65 66 178 64 218
-66 67 179 65 219
-67 66 220 68 180
-68 67 221 69 181
-69 68 222 70 182
-70 69 223 71 183
-71 70 224 72 184
-72 71 225 73 185
-73 72 226 74 186
-74 187 73 227 75
-75 188 74 228 76
-76 77 189 75 229
-77 78 190 76 230
-78 77 231 79 191
-79 78 232 80 192
-80 79 233 81 193
-81 80 234 82 194
-82 81 235 83 195
-83 82 236 84 196
-84 83 237 85 197
-85 198 84 238 86
-86 199 85 239 87
-87 88 200 86 240
-88 89 201 87 241
-89 88 242 90 202
-90 89 243 91 203
-91 90 244 92 204
-92 91 245 93 205
-93 92 246 94 206
-94 93 247 95 207
-95 94 248 96 208
-96 209 95 249 97
-97 210 96 250 98
-98 99 211 97 251
-99 100 212 98 252
-100 99 253 101 213
-101 100 254 102 214
-102 101 255 103 215
-103 102 256 104 216
-104 103 257 105 217
-105 104 258 106 218
-106 105 259 107 219
-107 220 106 260 108
-108 221 107 261 109
-109 110 222 108 262
-110 111 223 109 263
-111 110 264 112 224
-112 111 265 113 225
-113 112 266 114 226
-114 1 113 115 227
-115 2 114 116 228
-116 3 115 117 229
-117 4 116 118 230
-118 231 5 117 119
-119 232 6 118 120
-120 121 233 7 119
-121 122 234 8 120
-122 121 123 235 9
-123 122 124 236 10
-124 11 123 125 237
-125 12 124 126 238
-126 13 125 127 239
-127 14 126 128 240
-128 15 127 129 241
-129 242 16 128 130
-130 243 17 129 131
-131 132 244 18 130
-132 133 245 19 131
-133 132 134 246 20
-134 133 135 247 21
-135 22 134 136 248
-136 23 135 137 249
-137 24 136 138 250
-138 25 137 139 251
-139 26 138 140 252
-140 253 27 139 141
-141 254 28 140 142
-142 143 255 29 141
-143 144 256 30 142
-144 143 145 257 31
-145 144 146 258 32
-146 33 145 147 259
-147 34 146 148 260
-148 35 147 149 261
-149 36 148 150 262
-150 37 149 151 263
-151 264 38 150 152
-152 265 39 151 153
-153 154 266 40 152
-154 1 155 41 153
-155 154 2 156 42
-156 155 3 157 43
-157 44 156 4 158
-158 45 157 5 159
-159 46 158 6 160
-160 47 159 7 161
-161 48 160 8 162
-162 49 161 9 163
-163 50 162 10 164
-164 11 165 51 163
-165 12 166 52 164
-166 165 13 167 53
-167 166 14 168 54
-168 55 167 15 169
-169 56 168 16 170
-170 57 169 17 171
-171 58 170 18 172
-172 59 171 19 173
-173 60 172 20 174
-174 61 173 21 175
-175 22 176 62 174
-176 23 177 63 175
-177 176 24 178 64
-178 177 25 179 65
-179 66 178 26 180
-180 67 179 27 181
-181 68 180 28 182
-182 69 181 29 183
-183 70 182 30 184
-184 71 183 31 185
-185 72 184 32 186
-186 33 187 73 185
-187 34 188 74 186
-188 187 35 189 75
-189 188 36 190 76
-190 77 189 37 191
-191 78 190 38 192
-192 79 191 39 193
-193 80 192 40 194
-194 81 193 41 195
-195 82 194 42 196
-196 83 195 43 197
-197 44 198 84 196
-198 45 199 85 197
-199 198 46 200 86
-200 199 47 201 87
-201 88 200 48 202
-202 89 201 49 203
-203 90 202 50 204
-204 91 203 51 205
-205 92 204 52 206
-206 93 205 53 207
-207 94 206 54 208
-208 55 209 95 207
-209 56 210 96 208
-210 209 57 211 97
-211 210 58 212 98
-212 99 211 59 213
-213 100 212 60 214
-214 101 213 61 215
-215 102 214 62 216
-216 103 215 63 217
-217 104 216 64 218
-218 105 217 65 219
-219 66 220 106 218
-220 67 221 107 219
-221 220 68 222 108
-222 221 69 223 109
-223 110 222 70 224
-224 111 223 71 225
-225 112 224 72 226
-226 113 225 73 227
-227 114 226 74 228
-228 115 227 75 229
-229 116 228 76 230
-230 77 231 117 229
-231 78 232 118 230
-232 231 79 233 119
-233 232 80 234 120
-234 121 233 81 235
-235 122 234 82 236
-236 123 235 83 237
-237 124 236 84 238
-238 125 237 85 239
-239 126 238 86 240
-240 127 239 87 241
-241 88 242 128 240
-242 89 243 129 241
-243 242 90 244 130
-244 243 91 245 131
-245 132 244 92 246
-246 133 245 93 247
-247 134 246 94 248
-248 135 247 95 249
-249 136 248 96 250
-250 137 249 97 251
-251 138 250 98 252
-252 99 253 139 251
-253 100 254 140 252
-254 253 101 255 141
-255 254 102 256 142
-256 143 255 103 257
-257 144 256 104 258
-258 145 257 105 259
-259 146 258 106 260
-260 147 259 107 261
-261 148 260 108 262
-262 149 261 109 263
-263 110 264 150 262
-264 111 265 151 263
-265 264 112 266 152
-266 1 265 113 153
0

**************