C4graphGraph forms for C4 [ 267, 1 ] = C_267(1,88)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 267, 1 ] = C_267(1,88).

(I) Following is a form readable by MAGMA:

g:=Graph<267|{ {2, 3}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {1, 2}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {3, 4}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {1, 89}, {2, 90}, {3, 91}, {4, 92}, {5, 93}, {6, 94}, {7, 95}, {32, 120}, {33, 121}, {34, 122}, {35, 123}, {36, 124}, {37, 125}, {38, 126}, {39, 127}, {128, 216}, {129, 217}, {130, 218}, {131, 219}, {132, 220}, {133, 221}, {134, 222}, {135, 223}, {160, 248}, {161, 249}, {162, 250}, {163, 251}, {164, 252}, {165, 253}, {166, 254}, {167, 255}, {8, 96}, {9, 97}, {10, 98}, {11, 99}, {12, 100}, {13, 101}, {14, 102}, {15, 103}, {24, 112}, {25, 113}, {26, 114}, {27, 115}, {28, 116}, {29, 117}, {30, 118}, {31, 119}, {136, 224}, {137, 225}, {138, 226}, {139, 227}, {140, 228}, {141, 229}, {142, 230}, {143, 231}, {152, 240}, {153, 241}, {154, 242}, {155, 243}, {156, 244}, {157, 245}, {158, 246}, {159, 247}, {16, 104}, {17, 105}, {18, 106}, {19, 107}, {20, 108}, {21, 109}, {22, 110}, {23, 111}, {144, 232}, {145, 233}, {146, 234}, {147, 235}, {148, 236}, {149, 237}, {150, 238}, {151, 239}, {63, 64}, {191, 192}, {40, 128}, {63, 151}, {62, 150}, {61, 149}, {60, 148}, {59, 147}, {58, 146}, {57, 145}, {56, 144}, {41, 129}, {42, 130}, {43, 131}, {44, 132}, {45, 133}, {46, 134}, {47, 135}, {104, 192}, {105, 193}, {106, 194}, {107, 195}, {108, 196}, {109, 197}, {110, 198}, {111, 199}, {120, 208}, {121, 209}, {122, 210}, {123, 211}, {124, 212}, {125, 213}, {126, 214}, {127, 215}, {4, 183}, {76, 255}, {72, 251}, {68, 247}, {64, 243}, {8, 187}, {12, 191}, {1, 180}, {75, 254}, {73, 252}, {67, 246}, {65, 244}, {3, 182}, {9, 188}, {11, 190}, {2, 181}, {74, 253}, {66, 245}, {10, 189}, {48, 136}, {55, 143}, {54, 142}, {49, 137}, {50, 138}, {51, 139}, {52, 140}, {53, 141}, {112, 200}, {113, 201}, {114, 202}, {115, 203}, {116, 204}, {117, 205}, {118, 206}, {119, 207}, {5, 184}, {71, 250}, {69, 248}, {7, 186}, {6, 185}, {70, 249}, {13, 192}, {63, 242}, {61, 240}, {15, 194}, {29, 208}, {31, 210}, {45, 224}, {47, 226}, {14, 193}, {62, 241}, {30, 209}, {46, 225}, {16, 195}, {60, 239}, {56, 235}, {20, 199}, {24, 203}, {28, 207}, {48, 227}, {52, 231}, {17, 196}, {59, 238}, {57, 236}, {19, 198}, {25, 204}, {27, 206}, {49, 228}, {51, 230}, {18, 197}, {58, 237}, {26, 205}, {50, 229}, {64, 152}, {71, 159}, {70, 158}, {69, 157}, {68, 156}, {67, 155}, {66, 154}, {65, 153}, {96, 184}, {97, 185}, {98, 186}, {99, 187}, {100, 188}, {101, 189}, {102, 190}, {103, 191}, {21, 200}, {55, 234}, {53, 232}, {23, 202}, {22, 201}, {54, 233}, {72, 160}, {90, 178}, {89, 177}, {88, 176}, {79, 167}, {78, 166}, {77, 165}, {76, 164}, {75, 163}, {74, 162}, {73, 161}, {91, 179}, {92, 180}, {93, 181}, {94, 182}, {95, 183}, {32, 211}, {36, 215}, {40, 219}, {44, 223}, {33, 212}, {35, 214}, {41, 220}, {43, 222}, {34, 213}, {42, 221}, {80, 168}, {87, 175}, {86, 174}, {85, 173}, {84, 172}, {83, 171}, {82, 170}, {81, 169}, {37, 216}, {39, 218}, {38, 217}, {127, 128}, {1, 267}, {77, 256}, {79, 258}, {78, 257}, {80, 259}, {88, 267}, {84, 263}, {81, 260}, {83, 262}, {82, 261}, {85, 264}, {87, 266}, {86, 265}, {168, 256}, {169, 257}, {170, 258}, {171, 259}, {172, 260}, {173, 261}, {174, 262}, {175, 263}, {176, 264}, {177, 265}, {178, 266}, {179, 267}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 89)(3, 177)(4, 265)(5, 86)(6, 174)(7, 262)(8, 83)(9, 171)(10, 259)(11, 80)(12, 168)(13, 256)(14, 77)(15, 165)(16, 253)(17, 74)(18, 162)(19, 250)(20, 71)(21, 159)(22, 247)(23, 68)(24, 156)(25, 244)(26, 65)(27, 153)(28, 241)(29, 62)(30, 150)(31, 238)(32, 59)(33, 147)(34, 235)(35, 56)(36, 144)(37, 232)(38, 53)(39, 141)(40, 229)(41, 50)(42, 138)(43, 226)(44, 47)(45, 135)(46, 223)(48, 132)(49, 220)(51, 129)(52, 217)(54, 126)(55, 214)(57, 123)(58, 211)(60, 120)(61, 208)(63, 117)(64, 205)(66, 114)(67, 202)(69, 111)(70, 199)(72, 108)(73, 196)(75, 105)(76, 193)(78, 102)(79, 190)(81, 99)(82, 187)(84, 96)(85, 184)(87, 93)(88, 181)(91, 178)(92, 266)(94, 175)(95, 263)(97, 172)(98, 260)(100, 169)(101, 257)(103, 166)(104, 254)(106, 163)(107, 251)(109, 160)(110, 248)(112, 157)(113, 245)(115, 154)(116, 242)(118, 151)(119, 239)(121, 148)(122, 236)(124, 145)(125, 233)(127, 142)(128, 230)(130, 139)(131, 227)(133, 136)(134, 224)(137, 221)(140, 218)(143, 215)(146, 212)(149, 209)(152, 206)(155, 203)(158, 200)(161, 197)(164, 194)(167, 191)(170, 188)(173, 185)(176, 182)(180, 267)(183, 264)(186, 261)(189, 258)(192, 255)(195, 252)(198, 249)(201, 246)(204, 243)(207, 240)(210, 237)(213, 234)(216, 231)(219, 228)(222, 225)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267)
c: (2, 180)(3, 92)(5, 183)(6, 95)(8, 186)(9, 98)(11, 189)(12, 101)(14, 192)(15, 104)(17, 195)(18, 107)(20, 198)(21, 110)(23, 201)(24, 113)(26, 204)(27, 116)(29, 207)(30, 119)(32, 210)(33, 122)(35, 213)(36, 125)(38, 216)(39, 128)(41, 219)(42, 131)(44, 222)(45, 134)(47, 225)(48, 137)(50, 228)(51, 140)(53, 231)(54, 143)(56, 234)(57, 146)(59, 237)(60, 149)(62, 240)(63, 152)(65, 243)(66, 155)(68, 246)(69, 158)(71, 249)(72, 161)(74, 252)(75, 164)(77, 255)(78, 167)(80, 258)(81, 170)(83, 261)(84, 173)(86, 264)(87, 176)(89, 267)(90, 179)(93, 182)(96, 185)(99, 188)(102, 191)(105, 194)(108, 197)(111, 200)(114, 203)(117, 206)(120, 209)(123, 212)(126, 215)(129, 218)(132, 221)(135, 224)(138, 227)(141, 230)(144, 233)(147, 236)(150, 239)(153, 242)(156, 245)(159, 248)(162, 251)(165, 254)(168, 257)(171, 260)(174, 263)(177, 266)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 267, 1 ]
267
-1 89 2 267 180
-2 1 90 3 181
-3 2 91 4 182
-4 3 92 5 183
-5 4 93 6 184
-6 5 94 7 185
-7 6 95 8 186
-8 187 7 96 9
-9 188 8 97 10
-10 11 189 9 98
-11 99 12 190 10
-12 11 100 13 191
-13 12 101 14 192
-14 13 102 15 193
-15 14 103 16 194
-16 15 104 17 195
-17 16 105 18 196
-18 17 106 19 197
-19 198 18 107 20
-20 199 19 108 21
-21 22 200 20 109
-22 110 23 201 21
-23 22 111 24 202
-24 23 112 25 203
-25 24 113 26 204
-26 25 114 27 205
-27 26 115 28 206
-28 27 116 29 207
-29 28 117 30 208
-30 209 29 118 31
-31 210 30 119 32
-32 33 211 31 120
-33 121 34 212 32
-34 33 122 35 213
-35 34 123 36 214
-36 35 124 37 215
-37 36 125 38 216
-38 37 126 39 217
-39 38 127 40 218
-40 39 128 41 219
-41 220 40 129 42
-42 221 41 130 43
-43 44 222 42 131
-44 132 45 223 43
-45 44 133 46 224
-46 45 134 47 225
-47 46 135 48 226
-48 47 136 49 227
-49 48 137 50 228
-50 49 138 51 229
-51 50 139 52 230
-52 231 51 140 53
-53 232 52 141 54
-54 55 233 53 142
-55 143 56 234 54
-56 55 144 57 235
-57 56 145 58 236
-58 57 146 59 237
-59 58 147 60 238
-60 59 148 61 239
-61 60 149 62 240
-62 61 150 63 241
-63 242 62 151 64
-64 243 63 152 65
-65 66 244 64 153
-66 154 67 245 65
-67 66 155 68 246
-68 67 156 69 247
-69 68 157 70 248
-70 69 158 71 249
-71 70 159 72 250
-72 71 160 73 251
-73 72 161 74 252
-74 253 73 162 75
-75 254 74 163 76
-76 77 255 75 164
-77 165 78 256 76
-78 77 166 79 257
-79 78 167 80 258
-80 79 168 81 259
-81 80 169 82 260
-82 81 170 83 261
-83 82 171 84 262
-84 83 172 85 263
-85 264 84 173 86
-86 265 85 174 87
-87 88 266 86 175
-88 176 89 267 87
-89 88 1 177 90
-90 89 2 178 91
-91 90 3 179 92
-92 91 4 180 93
-93 92 5 181 94
-94 93 6 182 95
-95 94 7 183 96
-96 95 8 184 97
-97 96 9 185 98
-98 99 97 10 186
-99 11 187 100 98
-100 99 12 188 101
-101 100 13 189 102
-102 101 14 190 103
-103 102 15 191 104
-104 103 16 192 105
-105 104 17 193 106
-106 105 18 194 107
-107 106 19 195 108
-108 107 20 196 109
-109 110 108 21 197
-110 22 198 111 109
-111 110 23 199 112
-112 111 24 200 113
-113 112 25 201 114
-114 113 26 202 115
-115 114 27 203 116
-116 115 28 204 117
-117 116 29 205 118
-118 117 30 206 119
-119 118 31 207 120
-120 121 119 32 208
-121 33 209 122 120
-122 121 34 210 123
-123 122 35 211 124
-124 123 36 212 125
-125 124 37 213 126
-126 125 38 214 127
-127 126 39 215 128
-128 127 40 216 129
-129 128 41 217 130
-130 129 42 218 131
-131 132 130 43 219
-132 44 220 133 131
-133 132 45 221 134
-134 133 46 222 135
-135 134 47 223 136
-136 135 48 224 137
-137 136 49 225 138
-138 137 50 226 139
-139 138 51 227 140
-140 139 52 228 141
-141 140 53 229 142
-142 143 141 54 230
-143 55 231 144 142
-144 143 56 232 145
-145 144 57 233 146
-146 145 58 234 147
-147 146 59 235 148
-148 147 60 236 149
-149 148 61 237 150
-150 149 62 238 151
-151 150 63 239 152
-152 151 64 240 153
-153 154 152 65 241
-154 66 242 155 153
-155 154 67 243 156
-156 155 68 244 157
-157 156 69 245 158
-158 157 70 246 159
-159 158 71 247 160
-160 159 72 248 161
-161 160 73 249 162
-162 161 74 250 163
-163 162 75 251 164
-164 165 163 76 252
-165 77 253 166 164
-166 165 78 254 167
-167 166 79 255 168
-168 167 80 256 169
-169 168 81 257 170
-170 169 82 258 171
-171 170 83 259 172
-172 171 84 260 173
-173 172 85 261 174
-174 173 86 262 175
-175 176 174 87 263
-176 88 264 177 175
-177 176 89 265 178
-178 177 90 266 179
-179 178 91 267 180
-180 1 179 92 181
-181 2 180 93 182
-182 3 181 94 183
-183 4 182 95 184
-184 5 183 96 185
-185 6 184 97 186
-186 187 7 185 98
-187 99 188 8 186
-188 187 100 189 9
-189 188 101 190 10
-190 11 189 102 191
-191 12 190 103 192
-192 13 191 104 193
-193 14 192 105 194
-194 15 193 106 195
-195 16 194 107 196
-196 17 195 108 197
-197 198 18 196 109
-198 110 199 19 197
-199 198 111 200 20
-200 199 112 201 21
-201 22 200 113 202
-202 23 201 114 203
-203 24 202 115 204
-204 25 203 116 205
-205 26 204 117 206
-206 27 205 118 207
-207 28 206 119 208
-208 209 29 207 120
-209 121 210 30 208
-210 209 122 211 31
-211 210 123 212 32
-212 33 211 124 213
-213 34 212 125 214
-214 35 213 126 215
-215 36 214 127 216
-216 37 215 128 217
-217 38 216 129 218
-218 39 217 130 219
-219 220 40 218 131
-220 132 221 41 219
-221 220 133 222 42
-222 221 134 223 43
-223 44 222 135 224
-224 45 223 136 225
-225 46 224 137 226
-226 47 225 138 227
-227 48 226 139 228
-228 49 227 140 229
-229 50 228 141 230
-230 231 51 229 142
-231 143 232 52 230
-232 231 144 233 53
-233 232 145 234 54
-234 55 233 146 235
-235 56 234 147 236
-236 57 235 148 237
-237 58 236 149 238
-238 59 237 150 239
-239 60 238 151 240
-240 61 239 152 241
-241 242 62 240 153
-242 154 243 63 241
-243 242 155 244 64
-244 243 156 245 65
-245 66 244 157 246
-246 67 245 158 247
-247 68 246 159 248
-248 69 247 160 249
-249 70 248 161 250
-250 71 249 162 251
-251 72 250 163 252
-252 253 73 251 164
-253 165 254 74 252
-254 253 166 255 75
-255 254 167 256 76
-256 77 255 168 257
-257 78 256 169 258
-258 79 257 170 259
-259 80 258 171 260
-260 81 259 172 261
-261 82 260 173 262
-262 83 261 174 263
-263 264 84 262 175
-264 176 265 85 263
-265 264 177 266 86
-266 265 178 267 87
-267 88 1 266 179
0

**************