C4graphGraph forms for C4 [ 268, 1 ] = W(134,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 268, 1 ] = W(134,2).

(I) Following is a form readable by MAGMA:

g:=Graph<268|{ {2, 3}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {1, 2}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {3, 4}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {15, 16}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {191, 192}, {2, 135}, {82, 215}, {80, 213}, {74, 207}, {72, 205}, {66, 199}, {64, 197}, {58, 191}, {56, 189}, {8, 141}, {10, 143}, {16, 149}, {18, 151}, {24, 157}, {26, 159}, {32, 165}, {34, 167}, {40, 173}, {42, 175}, {48, 181}, {50, 183}, {88, 221}, {90, 223}, {96, 229}, {98, 231}, {104, 237}, {106, 239}, {112, 245}, {114, 247}, {120, 253}, {122, 255}, {1, 134}, {81, 214}, {80, 215}, {73, 206}, {72, 207}, {65, 198}, {64, 199}, {57, 190}, {56, 191}, {8, 143}, {9, 142}, {16, 151}, {17, 150}, {24, 159}, {25, 158}, {32, 167}, {33, 166}, {40, 175}, {41, 174}, {48, 183}, {49, 182}, {88, 223}, {89, 222}, {96, 231}, {97, 230}, {104, 239}, {105, 238}, {112, 247}, {113, 246}, {120, 255}, {121, 254}, {1, 136}, {85, 220}, {83, 218}, {81, 216}, {71, 206}, {69, 204}, {67, 202}, {65, 200}, {55, 190}, {53, 188}, {51, 186}, {3, 138}, {5, 140}, {7, 142}, {17, 152}, {19, 154}, {21, 156}, {23, 158}, {33, 168}, {35, 170}, {37, 172}, {39, 174}, {49, 184}, {87, 222}, {97, 232}, {99, 234}, {101, 236}, {103, 238}, {113, 248}, {115, 250}, {117, 252}, {119, 254}, {2, 137}, {83, 216}, {82, 217}, {71, 204}, {70, 205}, {67, 200}, {66, 201}, {55, 188}, {54, 189}, {51, 184}, {3, 136}, {6, 141}, {7, 140}, {18, 153}, {19, 152}, {22, 157}, {23, 156}, {34, 169}, {35, 168}, {38, 173}, {39, 172}, {50, 185}, {86, 221}, {87, 220}, {98, 233}, {99, 232}, {102, 237}, {103, 236}, {114, 249}, {115, 248}, {118, 253}, {119, 252}, {4, 137}, {84, 217}, {70, 203}, {68, 201}, {54, 187}, {52, 185}, {6, 139}, {20, 153}, {22, 155}, {36, 169}, {38, 171}, {86, 219}, {100, 233}, {102, 235}, {116, 249}, {118, 251}, {4, 139}, {85, 218}, {84, 219}, {69, 202}, {68, 203}, {53, 186}, {52, 187}, {5, 138}, {20, 155}, {21, 154}, {36, 171}, {37, 170}, {100, 235}, {101, 234}, {116, 251}, {117, 250}, {9, 144}, {79, 214}, {77, 212}, {75, 210}, {73, 208}, {11, 146}, {13, 148}, {15, 150}, {41, 176}, {43, 178}, {45, 180}, {47, 182}, {105, 240}, {107, 242}, {109, 244}, {111, 246}, {10, 145}, {79, 212}, {78, 213}, {75, 208}, {74, 209}, {11, 144}, {14, 149}, {15, 148}, {42, 177}, {43, 176}, {46, 181}, {47, 180}, {106, 241}, {107, 240}, {110, 245}, {111, 244}, {12, 145}, {78, 211}, {76, 209}, {14, 147}, {44, 177}, {46, 179}, {108, 241}, {110, 243}, {12, 147}, {77, 210}, {76, 211}, {13, 146}, {44, 179}, {45, 178}, {108, 243}, {109, 242}, {25, 160}, {27, 162}, {29, 164}, {31, 166}, {89, 224}, {91, 226}, {93, 228}, {95, 230}, {26, 161}, {27, 160}, {30, 165}, {31, 164}, {90, 225}, {91, 224}, {94, 229}, {95, 228}, {28, 161}, {30, 163}, {92, 225}, {94, 227}, {28, 163}, {29, 162}, {92, 227}, {93, 226}, {57, 192}, {63, 198}, {61, 196}, {59, 194}, {58, 193}, {63, 196}, {62, 197}, {59, 192}, {60, 193}, {62, 195}, {60, 195}, {61, 194}, {127, 128}, {1, 268}, {121, 256}, {123, 258}, {125, 260}, {127, 262}, {122, 257}, {123, 256}, {126, 261}, {127, 260}, {124, 257}, {126, 259}, {124, 259}, {125, 258}, {128, 261}, {130, 263}, {128, 263}, {129, 262}, {129, 264}, {131, 266}, {133, 268}, {130, 265}, {131, 264}, {135, 268}, {132, 265}, {134, 267}, {132, 267}, {133, 266}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (20, 154)
b: (115, 249)
c: (51, 185)
d: (84, 218)
e: (8, 142)
f: (39, 173)
g: (103, 237)
h: (72, 206)
m: (13, 147)
n1: (46, 180)
a1: (110, 244)
b1: (77, 211)
c1: (28, 162)
d1: (92, 226)
e1: (34, 168)
f1: (98, 232)
g1: (65, 199)
h1: (134, 268)
m1: (10, 144)
n2: (41, 175)
a2: (105, 239)
b2: (74, 208)
c2: (29, 163)
d2: (93, 227)
e2: (130, 264)
f2: (32, 166)
g2: (96, 230)
h2: (114, 248)
m2: (17, 151)
n3: (50, 184)
a3: (81, 215)
b3: (121, 255)
c3: (90, 224)
d3: (26, 160)
e3: (57, 191)
f3: (31, 165)
g3: (95, 229)
h3: (126, 260)
m3: (60, 194)
n4: (14, 148)
a4: (45, 179)
b4: (109, 243)
c4: (78, 212)
d4: (62, 196)
e4: (59, 193)
f4: (63, 197)
g4: (9, 143)
h4: (42, 176)
m4: (106, 240)
n5: (73, 207)
a5: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134)(135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268)
b5: (132, 266)
c5: (12, 146)
d5: (43, 177)
e5: (107, 241)
f5: (76, 210)
g5: (129, 263)
h5: (124, 258)
m5: (131, 265)
n6: (5, 139)
a6: (38, 172)
b6: (102, 236)
c6: (69, 203)
d6: (123, 257)
e6: (119, 253)
f6: (88, 222)
g6: (24, 158)
h6: (55, 189)
m6: (125, 259)
n7: (91, 225)
a7: (27, 161)
b7: (6, 140)
c7: (37, 171)
d7: (101, 235)
e7: (70, 204)
f7: (4, 138)
g7: (99, 233)
h7: (35, 169)
m7: (68, 202)
n8: (18, 152)
a8: (113, 247)
b8: (49, 183)
c8: (82, 216)
d8: (15, 149)
e8: (48, 182)
f8: (112, 246)
g8: (79, 213)
h8: (22, 156)
m8: (117, 251)
n9: (86, 220)
a9: (53, 187)
b9: (122, 256)
c9: (89, 223)
d9: (25, 159)
e9: (58, 192)
f9: (61, 195)
g9: (127, 261)
h9: (11, 145)
m9: (44, 178)
n10: (108, 242)
a10: (75, 209)
b10: (120, 254)
c10: (87, 221)
d10: (23, 157)
e10: (56, 190)
f10: (21, 155)
g10: (118, 252)
h10: (85, 219)
m10: (54, 188)
n11: (111, 245)
a11: (47, 181)
b11: (16, 150)
c11: (80, 214)
d11: (33, 167)
e11: (97, 231)
f11: (2, 136)
g11: (19, 153)
h11: (116, 250)
m11: (52, 186)
n12: (83, 217)
a12: (2, 134)(3, 133)(4, 132)(5, 131)(6, 130)(7, 129)(8, 128)(9, 127)(10, 126)(11, 125)(12, 124)(13, 123)(14, 122)(15, 121)(16, 120)(17, 119)(18, 118)(19, 117)(20, 116)(21, 115)(22, 114)(23, 113)(24, 112)(25, 111)(26, 110)(27, 109)(28, 108)(29, 107)(30, 106)(31, 105)(32, 104)(33, 103)(34, 102)(35, 101)(36, 100)(37, 99)(38, 98)(39, 97)(40, 96)(41, 95)(42, 94)(43, 93)(44, 92)(45, 91)(46, 90)(47, 89)(48, 88)(49, 87)(50, 86)(51, 85)(52, 84)(53, 83)(54, 82)(55, 81)(56, 80)(57, 79)(58, 78)(59, 77)(60, 76)(61, 75)(62, 74)(63, 73)(64, 72)(65, 71)(66, 70)(67, 69)(136, 268)(137, 267)(138, 266)(139, 265)(140, 264)(141, 263)(142, 262)(143, 261)(144, 260)(145, 259)(146, 258)(147, 257)(148, 256)(149, 255)(150, 254)(151, 253)(152, 252)(153, 251)(154, 250)(155, 249)(156, 248)(157, 247)(158, 246)(159, 245)(160, 244)(161, 243)(162, 242)(163, 241)(164, 240)(165, 239)(166, 238)(167, 237)(168, 236)(169, 235)(170, 234)(171, 233)(172, 232)(173, 231)(174, 230)(175, 229)(176, 228)(177, 227)(178, 226)(179, 225)(180, 224)(181, 223)(182, 222)(183, 221)(184, 220)(185, 219)(186, 218)(187, 217)(188, 216)(189, 215)(190, 214)(191, 213)(192, 212)(193, 211)(194, 210)(195, 209)(196, 208)(197, 207)(198, 206)(199, 205)(200, 204)(201, 203)
b12: (7, 141)
c12: (40, 174)
d12: (104, 238)
e12: (71, 205)
f12: (3, 137)
g12: (36, 170)
h12: (100, 234)
m12: (67, 201)
n13: (30, 164)
a13: (94, 228)
b13: (64, 198)
c13: (133, 267)
d13: (128, 262)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 268, 1 ]
268
-1 2 134 136 268
-2 1 3 135 137
-3 2 4 136 138
-4 3 5 137 139
-5 4 6 138 140
-6 5 7 139 141
-7 6 8 140 142
-8 143 7 9 141
-9 144 8 10 142
-10 11 143 145 9
-11 12 144 146 10
-12 11 13 145 147
-13 12 14 146 148
-14 13 15 147 149
-15 14 16 148 150
-16 15 17 149 151
-17 16 18 150 152
-18 17 19 151 153
-19 154 18 20 152
-20 155 19 21 153
-21 22 154 156 20
-22 23 155 157 21
-23 22 24 156 158
-24 23 25 157 159
-25 24 26 158 160
-26 25 27 159 161
-27 26 28 160 162
-28 27 29 161 163
-29 28 30 162 164
-30 165 29 31 163
-31 166 30 32 164
-32 33 165 167 31
-33 34 166 168 32
-34 33 35 167 169
-35 34 36 168 170
-36 35 37 169 171
-37 36 38 170 172
-38 37 39 171 173
-39 38 40 172 174
-40 39 41 173 175
-41 176 40 42 174
-42 177 41 43 175
-43 44 176 178 42
-44 45 177 179 43
-45 44 46 178 180
-46 45 47 179 181
-47 46 48 180 182
-48 47 49 181 183
-49 48 50 182 184
-50 49 51 183 185
-51 50 52 184 186
-52 187 51 53 185
-53 188 52 54 186
-54 55 187 189 53
-55 56 188 190 54
-56 55 57 189 191
-57 56 58 190 192
-58 57 59 191 193
-59 58 60 192 194
-60 59 61 193 195
-61 60 62 194 196
-62 61 63 195 197
-63 198 62 64 196
-64 199 63 65 197
-65 66 198 200 64
-66 67 199 201 65
-67 66 68 200 202
-68 67 69 201 203
-69 68 70 202 204
-70 69 71 203 205
-71 70 72 204 206
-72 71 73 205 207
-73 72 74 206 208
-74 209 73 75 207
-75 210 74 76 208
-76 77 209 211 75
-77 78 210 212 76
-78 77 79 211 213
-79 78 80 212 214
-80 79 81 213 215
-81 80 82 214 216
-82 81 83 215 217
-83 82 84 216 218
-84 83 85 217 219
-85 220 84 86 218
-86 221 85 87 219
-87 88 220 222 86
-88 89 221 223 87
-89 88 90 222 224
-90 89 91 223 225
-91 90 92 224 226
-92 91 93 225 227
-93 92 94 226 228
-94 93 95 227 229
-95 94 96 228 230
-96 231 95 97 229
-97 232 96 98 230
-98 99 231 233 97
-99 100 232 234 98
-100 99 101 233 235
-101 100 102 234 236
-102 101 103 235 237
-103 102 104 236 238
-104 103 105 237 239
-105 104 106 238 240
-106 105 107 239 241
-107 242 106 108 240
-108 243 107 109 241
-109 110 242 244 108
-110 111 243 245 109
-111 110 112 244 246
-112 111 113 245 247
-113 112 114 246 248
-114 113 115 247 249
-115 114 116 248 250
-116 115 117 249 251
-117 116 118 250 252
-118 253 117 119 251
-119 254 118 120 252
-120 121 253 255 119
-121 122 254 256 120
-122 121 123 255 257
-123 122 124 256 258
-124 123 125 257 259
-125 124 126 258 260
-126 125 127 259 261
-127 126 128 260 262
-128 127 129 261 263
-129 264 128 130 262
-130 265 129 131 263
-131 132 264 266 130
-132 133 265 267 131
-133 132 134 266 268
-134 1 133 135 267
-135 2 134 136 268
-136 1 3 135 137
-137 2 4 136 138
-138 3 5 137 139
-139 4 6 138 140
-140 5 7 139 141
-141 6 8 140 142
-142 143 7 9 141
-143 144 8 10 142
-144 11 143 145 9
-145 12 144 146 10
-146 11 13 145 147
-147 12 14 146 148
-148 13 15 147 149
-149 14 16 148 150
-150 15 17 149 151
-151 16 18 150 152
-152 17 19 151 153
-153 154 18 20 152
-154 155 19 21 153
-155 22 154 156 20
-156 23 155 157 21
-157 22 24 156 158
-158 23 25 157 159
-159 24 26 158 160
-160 25 27 159 161
-161 26 28 160 162
-162 27 29 161 163
-163 28 30 162 164
-164 165 29 31 163
-165 166 30 32 164
-166 33 165 167 31
-167 34 166 168 32
-168 33 35 167 169
-169 34 36 168 170
-170 35 37 169 171
-171 36 38 170 172
-172 37 39 171 173
-173 38 40 172 174
-174 39 41 173 175
-175 176 40 42 174
-176 177 41 43 175
-177 44 176 178 42
-178 45 177 179 43
-179 44 46 178 180
-180 45 47 179 181
-181 46 48 180 182
-182 47 49 181 183
-183 48 50 182 184
-184 49 51 183 185
-185 50 52 184 186
-186 187 51 53 185
-187 188 52 54 186
-188 55 187 189 53
-189 56 188 190 54
-190 55 57 189 191
-191 56 58 190 192
-192 57 59 191 193
-193 58 60 192 194
-194 59 61 193 195
-195 60 62 194 196
-196 61 63 195 197
-197 198 62 64 196
-198 199 63 65 197
-199 66 198 200 64
-200 67 199 201 65
-201 66 68 200 202
-202 67 69 201 203
-203 68 70 202 204
-204 69 71 203 205
-205 70 72 204 206
-206 71 73 205 207
-207 72 74 206 208
-208 209 73 75 207
-209 210 74 76 208
-210 77 209 211 75
-211 78 210 212 76
-212 77 79 211 213
-213 78 80 212 214
-214 79 81 213 215
-215 80 82 214 216
-216 81 83 215 217
-217 82 84 216 218
-218 83 85 217 219
-219 220 84 86 218
-220 221 85 87 219
-221 88 220 222 86
-222 89 221 223 87
-223 88 90 222 224
-224 89 91 223 225
-225 90 92 224 226
-226 91 93 225 227
-227 92 94 226 228
-228 93 95 227 229
-229 94 96 228 230
-230 231 95 97 229
-231 232 96 98 230
-232 99 231 233 97
-233 100 232 234 98
-234 99 101 233 235
-235 100 102 234 236
-236 101 103 235 237
-237 102 104 236 238
-238 103 105 237 239
-239 104 106 238 240
-240 105 107 239 241
-241 242 106 108 240
-242 243 107 109 241
-243 110 242 244 108
-244 111 243 245 109
-245 110 112 244 246
-246 111 113 245 247
-247 112 114 246 248
-248 113 115 247 249
-249 114 116 248 250
-250 115 117 249 251
-251 116 118 250 252
-252 253 117 119 251
-253 254 118 120 252
-254 121 253 255 119
-255 122 254 256 120
-256 121 123 255 257
-257 122 124 256 258
-258 123 125 257 259
-259 124 126 258 260
-260 125 127 259 261
-261 126 128 260 262
-262 127 129 261 263
-263 264 128 130 262
-264 265 129 131 263
-265 132 264 266 130
-266 133 265 267 131
-267 132 134 266 268
-268 1 133 135 267
0

**************