C4graphGraph forms for C4 [ 268, 2 ] = R_134(69,68)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 268, 2 ] = R_134(69,68).

(I) Following is a form readable by MAGMA:

g:=Graph<268|{ {2, 3}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {1, 2}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {3, 4}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {15, 16}, {79, 80}, {47, 48}, {111, 112}, {31, 32}, {95, 96}, {128, 193}, {130, 195}, {132, 197}, {134, 199}, {136, 202}, {189, 255}, {188, 254}, {185, 251}, {184, 250}, {181, 247}, {180, 246}, {177, 243}, {176, 242}, {173, 239}, {172, 238}, {169, 235}, {168, 234}, {165, 231}, {137, 203}, {140, 206}, {141, 207}, {144, 210}, {145, 211}, {148, 214}, {149, 215}, {152, 218}, {153, 219}, {156, 222}, {157, 223}, {160, 226}, {161, 227}, {164, 230}, {129, 194}, {133, 198}, {136, 204}, {187, 255}, {186, 254}, {185, 253}, {184, 252}, {179, 247}, {178, 246}, {177, 245}, {176, 244}, {171, 239}, {170, 238}, {169, 237}, {168, 236}, {137, 205}, {138, 206}, {139, 207}, {144, 212}, {145, 213}, {146, 214}, {147, 215}, {152, 220}, {153, 221}, {154, 222}, {155, 223}, {160, 228}, {161, 229}, {162, 230}, {163, 231}, {138, 204}, {187, 253}, {186, 252}, {179, 245}, {178, 244}, {171, 237}, {170, 236}, {139, 205}, {146, 212}, {147, 213}, {154, 220}, {155, 221}, {162, 228}, {163, 229}, {131, 196}, {135, 203}, {183, 251}, {182, 250}, {181, 249}, {180, 248}, {167, 235}, {166, 234}, {165, 233}, {164, 232}, {148, 216}, {149, 217}, {150, 218}, {151, 219}, {135, 201}, {183, 249}, {182, 248}, {167, 233}, {166, 232}, {150, 216}, {151, 217}, {140, 208}, {175, 243}, {174, 242}, {173, 241}, {172, 240}, {141, 209}, {142, 210}, {143, 211}, {142, 208}, {175, 241}, {174, 240}, {143, 209}, {156, 224}, {157, 225}, {158, 226}, {159, 227}, {158, 224}, {159, 225}, {63, 64}, {1, 135}, {88, 222}, {81, 215}, {80, 214}, {73, 207}, {72, 206}, {65, 199}, {64, 198}, {57, 191}, {56, 190}, {8, 142}, {9, 143}, {16, 150}, {17, 151}, {24, 158}, {25, 159}, {32, 166}, {33, 167}, {40, 174}, {41, 175}, {48, 182}, {49, 183}, {89, 223}, {96, 230}, {97, 231}, {104, 238}, {105, 239}, {112, 246}, {113, 247}, {120, 254}, {121, 255}, {1, 134}, {2, 136}, {87, 221}, {86, 220}, {83, 217}, {82, 216}, {71, 205}, {70, 204}, {67, 201}, {66, 200}, {55, 189}, {54, 188}, {3, 137}, {6, 140}, {7, 141}, {18, 152}, {19, 153}, {22, 156}, {23, 157}, {34, 168}, {35, 169}, {38, 172}, {39, 173}, {50, 184}, {51, 185}, {98, 232}, {99, 233}, {102, 236}, {103, 237}, {114, 248}, {115, 249}, {118, 252}, {119, 253}, {4, 138}, {85, 219}, {84, 218}, {69, 203}, {68, 202}, {53, 187}, {52, 186}, {5, 139}, {20, 154}, {21, 155}, {36, 170}, {37, 171}, {100, 234}, {101, 235}, {116, 250}, {117, 251}, {10, 144}, {79, 213}, {78, 212}, {75, 209}, {74, 208}, {11, 145}, {14, 148}, {15, 149}, {42, 176}, {43, 177}, {46, 180}, {47, 181}, {106, 240}, {107, 241}, {110, 244}, {111, 245}, {12, 146}, {77, 211}, {76, 210}, {13, 147}, {44, 178}, {45, 179}, {108, 242}, {109, 243}, {26, 160}, {27, 161}, {30, 164}, {31, 165}, {90, 224}, {91, 225}, {94, 228}, {95, 229}, {28, 162}, {29, 163}, {92, 226}, {93, 227}, {127, 192}, {70, 135}, {88, 153}, {86, 151}, {84, 149}, {82, 147}, {80, 145}, {78, 143}, {76, 141}, {74, 139}, {72, 137}, {90, 155}, {92, 157}, {94, 159}, {96, 161}, {98, 163}, {100, 165}, {102, 167}, {104, 169}, {106, 171}, {108, 173}, {110, 175}, {112, 177}, {114, 179}, {116, 181}, {118, 183}, {120, 185}, {122, 187}, {124, 189}, {126, 191}, {73, 138}, {85, 150}, {81, 146}, {77, 142}, {89, 154}, {93, 158}, {97, 162}, {101, 166}, {105, 170}, {109, 174}, {113, 178}, {117, 182}, {121, 186}, {125, 190}, {8, 207}, {83, 148}, {75, 140}, {56, 255}, {16, 215}, {24, 223}, {32, 231}, {40, 239}, {48, 247}, {91, 156}, {99, 164}, {107, 172}, {115, 180}, {123, 188}, {1, 200}, {55, 254}, {53, 252}, {3, 202}, {5, 204}, {7, 206}, {17, 216}, {19, 218}, {21, 220}, {23, 222}, {33, 232}, {35, 234}, {37, 236}, {39, 238}, {49, 248}, {51, 250}, {2, 201}, {54, 253}, {6, 205}, {18, 217}, {22, 221}, {34, 233}, {38, 237}, {50, 249}, {4, 203}, {87, 152}, {71, 136}, {52, 251}, {20, 219}, {36, 235}, {103, 168}, {119, 184}, {9, 208}, {11, 210}, {13, 212}, {15, 214}, {41, 240}, {43, 242}, {45, 244}, {47, 246}, {10, 209}, {14, 213}, {42, 241}, {46, 245}, {12, 211}, {79, 144}, {44, 243}, {111, 176}, {25, 224}, {27, 226}, {29, 228}, {31, 230}, {58, 192}, {63, 197}, {62, 196}, {59, 193}, {26, 225}, {30, 229}, {60, 194}, {61, 195}, {28, 227}, {95, 160}, {127, 128}, {57, 256}, {63, 262}, {61, 260}, {59, 258}, {58, 257}, {62, 261}, {60, 259}, {64, 263}, {65, 264}, {69, 268}, {67, 266}, {66, 265}, {68, 267}, {122, 256}, {123, 257}, {126, 260}, {127, 261}, {124, 258}, {125, 259}, {128, 262}, {129, 263}, {130, 264}, {131, 265}, {134, 268}, {132, 266}, {133, 267}, {188, 256}, {191, 259}, {190, 258}, {189, 257}, {190, 256}, {191, 257}, {192, 258}, {201, 267}, {200, 266}, {197, 263}, {196, 262}, {193, 259}, {192, 260}, {200, 268}, {195, 263}, {194, 262}, {193, 261}, {194, 260}, {202, 268}, {195, 261}, {196, 264}, {199, 267}, {198, 266}, {197, 265}, {198, 264}, {199, 265} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (38, 171)(39, 106)(40, 240)(105, 238)(107, 173)(172, 239)
b: (29, 162)(30, 230)(96, 229)(97, 163)
c: (56, 189)(57, 124)(58, 258)(123, 256)(125, 191)(190, 257)
d: (31, 164)(32, 232)(98, 231)(99, 165)
e: (59, 192)(60, 260)(126, 259)(127, 193)
f: (58, 191)(59, 126)(60, 260)(125, 258)(127, 193)(192, 259)
g: (53, 186)(54, 254)(120, 253)(121, 187)
h: (65, 198)(66, 266)(132, 265)(133, 199)
m: (45, 178)(46, 246)(112, 245)(113, 179)
n1: (6, 139)(7, 74)(8, 208)(73, 206)(75, 141)(140, 207)
a1: (52, 185)(53, 120)(54, 254)(119, 252)(121, 187)(186, 253)
b1: (43, 176)(44, 244)(110, 243)(111, 177)
c1: (23, 156)(24, 224)(90, 223)(91, 157)
d1: (63, 196)(64, 264)(130, 263)(131, 197)
e1: (21, 154)(22, 222)(88, 221)(89, 155)
f1: (11, 144)(12, 212)(78, 211)(79, 145)
g1: (49, 182)(50, 250)(116, 249)(117, 183)
h1: (36, 169)(37, 104)(38, 238)(103, 236)(105, 171)(170, 237)
m1: (37, 170)(38, 238)(104, 237)(105, 171)
n2: (34, 167)(35, 102)(36, 236)(101, 234)(103, 169)(168, 235)
a2: (17, 150)(18, 218)(84, 217)(85, 151)
b2: (24, 157)(25, 92)(26, 226)(91, 224)(93, 159)(158, 225)
c2: (42, 175)(43, 110)(44, 244)(109, 242)(111, 177)(176, 243)
d2: (32, 165)(33, 100)(34, 234)(99, 232)(101, 167)(166, 233)
e2: (46, 179)(47, 114)(48, 248)(113, 246)(115, 181)(180, 247)
f2: (15, 148)(16, 216)(82, 215)(83, 149)
g2: (41, 174)(42, 242)(108, 241)(109, 175)
h2: (61, 194)(62, 262)(128, 261)(129, 195)
m2: (62, 195)(63, 130)(64, 264)(129, 262)(131, 197)(196, 263)
n3: (44, 177)(45, 112)(46, 246)(111, 244)(113, 179)(178, 245)
a3: (2, 200, 135, 134)(3, 66, 203, 199)(4, 65)(5, 64)(6, 63)(7, 62)(8, 61)(9, 60)(10, 59)(11, 58)(12, 57)(13, 56)(14, 55)(15, 54)(16, 53)(17, 52)(18, 51)(19, 50)(20, 49)(21, 48)(22, 47)(23, 46)(24, 45)(25, 44)(26, 43)(27, 42)(28, 41)(29, 40)(30, 39)(31, 38)(32, 37)(33, 36)(34, 35)(67, 69, 267, 202)(70, 133, 136, 266)(71, 132)(72, 131)(73, 130)(74, 129)(75, 128)(76, 127)(77, 126)(78, 125)(79, 124)(80, 123)(81, 122)(82, 121)(83, 120)(84, 119)(85, 118)(86, 117)(87, 116)(88, 115)(89, 114)(90, 113)(91, 112)(92, 111)(93, 110)(94, 109)(95, 108)(96, 107)(97, 106)(98, 105)(99, 104)(100, 103)(101, 102)(137, 265)(138, 264)(139, 263)(140, 262)(141, 261)(142, 260)(143, 259)(144, 258)(145, 257)(146, 256)(147, 255)(148, 254)(149, 253)(150, 252)(151, 251)(152, 250)(153, 249)(154, 248)(155, 247)(156, 246)(157, 245)(158, 244)(159, 243)(160, 242)(161, 241)(162, 240)(163, 239)(164, 238)(165, 237)(166, 236)(167, 235)(168, 234)(169, 233)(170, 232)(171, 231)(172, 230)(173, 229)(174, 228)(175, 227)(176, 226)(177, 225)(178, 224)(179, 223)(180, 222)(181, 221)(182, 220)(183, 219)(184, 218)(185, 217)(186, 216)(187, 215)(188, 214)(189, 213)(190, 212)(191, 211)(192, 210)(193, 209)(194, 208)(195, 207)(196, 206)(197, 205)(198, 204)(201, 268)
b3: (5, 138)(6, 206)(72, 205)(73, 139)
c3: (57, 190)(58, 258)(124, 257)(125, 191)
d3: (48, 181)(49, 116)(50, 250)(115, 248)(117, 183)(182, 249)
e3: (9, 142)(10, 210)(76, 209)(77, 143)
f3: (51, 184)(52, 252)(118, 251)(119, 185)
g3: (8, 141)(9, 76)(10, 210)(75, 208)(77, 143)(142, 209)
h3: (33, 166)(34, 234)(100, 233)(101, 167)
m3: (14, 147)(15, 82)(16, 216)(81, 214)(83, 149)(148, 215)
n4: (16, 149)(17, 84)(18, 218)(83, 216)(85, 151)(150, 217)
a4: (39, 172)(40, 240)(106, 239)(107, 173)
b4: (60, 193)(61, 128)(62, 262)(127, 260)(129, 195)(194, 261)
c4: (27, 160)(28, 228)(94, 227)(95, 161)
d4: (28, 161)(29, 96)(30, 230)(95, 228)(97, 163)(162, 229)
e4: (18, 151)(19, 86)(20, 220)(85, 218)(87, 153)(152, 219)
f4: (50, 183)(51, 118)(52, 252)(117, 250)(119, 185)(184, 251)
g4: (22, 155)(23, 90)(24, 224)(89, 222)(91, 157)(156, 223)
h4: (47, 180)(48, 248)(114, 247)(115, 181)
m4: (4, 137)(5, 72)(6, 206)(71, 204)(73, 139)(138, 205)
n5: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134)(135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268)
a5: (10, 143)(11, 78)(12, 212)(77, 210)(79, 145)(144, 211)
b5: (25, 158)(26, 226)(92, 225)(93, 159)
c5: (66, 199)(67, 267)(133, 266)(134, 200)
d5: (12, 145)(13, 80)(14, 214)(79, 212)(81, 147)(146, 213)
e5: (35, 168)(36, 236)(102, 235)(103, 169)
f5: (13, 146)(14, 214)(80, 213)(81, 147)
g5: (7, 140)(8, 208)(74, 207)(75, 141)
h5: (55, 188)(56, 256)(122, 255)(123, 189)
m5: (40, 173)(41, 108)(42, 242)(107, 240)(109, 175)(174, 241)
n6: (19, 152)(20, 220)(86, 219)(87, 153)
a6: (20, 153)(21, 88)(22, 222)(87, 220)(89, 155)(154, 221)
b6: (30, 163)(31, 98)(32, 232)(97, 230)(99, 165)(164, 231)
c6: (64, 197)(65, 132)(66, 266)(131, 264)(133, 199)(198, 265)
d6: (26, 159)(27, 94)(28, 228)(93, 226)(95, 161)(160, 227)
e6: (54, 187)(55, 122)(56, 256)(121, 254)(123, 189)(188, 255)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 268, 2 ]
268
-1 2 134 200 135
-2 1 3 201 136
-3 2 4 202 137
-4 3 5 203 138
-5 4 6 204 139
-6 5 7 205 140
-7 6 8 206 141
-8 7 9 207 142
-9 143 8 10 208
-10 11 209 144 9
-11 12 210 145 10
-12 11 13 211 146
-13 12 14 212 147
-14 13 15 213 148
-15 14 16 214 149
-16 15 17 215 150
-17 16 18 216 151
-18 17 19 217 152
-19 18 20 218 153
-20 154 19 21 219
-21 22 220 155 20
-22 23 221 156 21
-23 22 24 222 157
-24 23 25 223 158
-25 24 26 224 159
-26 25 27 225 160
-27 26 28 226 161
-28 27 29 227 162
-29 28 30 228 163
-30 29 31 229 164
-31 165 30 32 230
-32 33 231 166 31
-33 34 232 167 32
-34 33 35 233 168
-35 34 36 234 169
-36 35 37 235 170
-37 36 38 236 171
-38 37 39 237 172
-39 38 40 238 173
-40 39 41 239 174
-41 40 42 240 175
-42 176 41 43 241
-43 44 242 177 42
-44 45 243 178 43
-45 44 46 244 179
-46 45 47 245 180
-47 46 48 246 181
-48 47 49 247 182
-49 48 50 248 183
-50 49 51 249 184
-51 50 52 250 185
-52 51 53 251 186
-53 187 52 54 252
-54 55 253 188 53
-55 56 254 189 54
-56 55 57 255 190
-57 56 58 256 191
-58 57 59 257 192
-59 58 60 258 193
-60 59 61 259 194
-61 60 62 260 195
-62 61 63 261 196
-63 62 64 262 197
-64 198 63 65 263
-65 66 264 199 64
-66 67 265 200 65
-67 66 68 266 201
-68 67 69 267 202
-69 68 70 268 203
-70 69 135 71 204
-71 70 136 72 205
-72 71 137 73 206
-73 72 138 74 207
-74 73 139 75 208
-75 209 74 140 76
-76 77 210 75 141
-77 78 211 76 142
-78 77 143 79 212
-79 78 144 80 213
-80 79 145 81 214
-81 80 146 82 215
-82 81 147 83 216
-83 82 148 84 217
-84 83 149 85 218
-85 84 150 86 219
-86 220 85 151 87
-87 88 221 86 152
-88 89 222 87 153
-89 88 154 90 223
-90 89 155 91 224
-91 90 156 92 225
-92 91 157 93 226
-93 92 158 94 227
-94 93 159 95 228
-95 94 160 96 229
-96 95 161 97 230
-97 231 96 162 98
-98 99 232 97 163
-99 100 233 98 164
-100 99 165 101 234
-101 100 166 102 235
-102 101 167 103 236
-103 102 168 104 237
-104 103 169 105 238
-105 104 170 106 239
-106 105 171 107 240
-107 106 172 108 241
-108 242 107 173 109
-109 110 243 108 174
-110 111 244 109 175
-111 110 176 112 245
-112 111 177 113 246
-113 112 178 114 247
-114 113 179 115 248
-115 114 180 116 249
-116 115 181 117 250
-117 116 182 118 251
-118 117 183 119 252
-119 253 118 184 120
-120 121 254 119 185
-121 122 255 120 186
-122 121 187 123 256
-123 122 188 124 257
-124 123 189 125 258
-125 124 190 126 259
-126 125 191 127 260
-127 126 192 128 261
-128 127 193 129 262
-129 128 194 130 263
-130 264 129 195 131
-131 132 265 130 196
-132 133 266 131 197
-133 132 198 134 267
-134 1 133 199 268
-135 1 201 70 203
-136 2 202 71 204
-137 3 203 72 205
-138 4 204 73 206
-139 5 205 74 207
-140 6 206 75 208
-141 209 7 207 76
-142 77 210 8 208
-143 209 78 211 9
-144 210 79 212 10
-145 11 211 80 213
-146 12 212 81 214
-147 13 213 82 215
-148 14 214 83 216
-149 15 215 84 217
-150 16 216 85 218
-151 17 217 86 219
-152 220 18 218 87
-153 88 221 19 219
-154 220 89 222 20
-155 221 90 223 21
-156 22 222 91 224
-157 23 223 92 225
-158 24 224 93 226
-159 25 225 94 227
-160 26 226 95 228
-161 27 227 96 229
-162 28 228 97 230
-163 231 29 229 98
-164 99 232 30 230
-165 231 100 233 31
-166 232 101 234 32
-167 33 233 102 235
-168 34 234 103 236
-169 35 235 104 237
-170 36 236 105 238
-171 37 237 106 239
-172 38 238 107 240
-173 39 239 108 241
-174 242 40 240 109
-175 110 243 41 241
-176 242 111 244 42
-177 243 112 245 43
-178 44 244 113 246
-179 45 245 114 247
-180 46 246 115 248
-181 47 247 116 249
-182 48 248 117 250
-183 49 249 118 251
-184 50 250 119 252
-185 253 51 251 120
-186 121 254 52 252
-187 253 122 255 53
-188 254 123 256 54
-189 55 255 124 257
-190 56 256 125 258
-191 57 257 126 259
-192 58 258 127 260
-193 59 259 128 261
-194 60 260 129 262
-195 61 261 130 263
-196 264 62 262 131
-197 132 265 63 263
-198 264 133 266 64
-199 265 134 267 65
-200 66 1 266 268
-201 67 2 135 267
-202 68 3 136 268
-203 69 135 4 137
-204 70 136 5 138
-205 71 137 6 139
-206 72 138 7 140
-207 73 139 8 141
-208 74 140 9 142
-209 143 75 141 10
-210 11 144 76 142
-211 77 143 12 145
-212 78 144 13 146
-213 79 145 14 147
-214 80 146 15 148
-215 81 147 16 149
-216 82 148 17 150
-217 83 149 18 151
-218 84 150 19 152
-219 85 151 20 153
-220 154 86 152 21
-221 22 155 87 153
-222 88 154 23 156
-223 89 155 24 157
-224 90 156 25 158
-225 91 157 26 159
-226 92 158 27 160
-227 93 159 28 161
-228 94 160 29 162
-229 95 161 30 163
-230 96 162 31 164
-231 165 97 163 32
-232 33 166 98 164
-233 99 165 34 167
-234 100 166 35 168
-235 101 167 36 169
-236 102 168 37 170
-237 103 169 38 171
-238 104 170 39 172
-239 105 171 40 173
-240 106 172 41 174
-241 107 173 42 175
-242 176 108 174 43
-243 44 177 109 175
-244 110 176 45 178
-245 111 177 46 179
-246 112 178 47 180
-247 113 179 48 181
-248 114 180 49 182
-249 115 181 50 183
-250 116 182 51 184
-251 117 183 52 185
-252 118 184 53 186
-253 187 119 185 54
-254 55 188 120 186
-255 121 187 56 189
-256 122 188 57 190
-257 123 189 58 191
-258 124 190 59 192
-259 125 191 60 193
-260 126 192 61 194
-261 127 193 62 195
-262 128 194 63 196
-263 129 195 64 197
-264 198 130 196 65
-265 66 199 131 197
-266 132 198 67 200
-267 133 199 68 201
-268 134 200 69 202
0

**************