[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 270, 1 ] =
W(135,2).
(I) Following is a form readable by MAGMA:
g:=Graph<270|{ {2, 3}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260,
261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249},
{246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234,
235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223},
{220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208,
209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197},
{194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182,
183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171},
{168, 169}, {166, 167}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74,
75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58,
59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27},
{28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43},
{44, 45}, {46, 47}, {48, 49}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95},
{96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109},
{110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122,
123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135},
{136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148,
149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161},
{162, 163}, {164, 165}, {1, 2}, {269, 270}, {265, 266}, {261, 262}, {257, 258},
{253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229,
230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206},
{201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177,
178}, {173, 174}, {169, 170}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66},
{61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22},
{25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {85, 86},
{89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114},
{117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141,
142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166},
{3, 4}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228},
{219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171,
172}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27,
28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123,
124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {7, 8}, {263,
264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168},
{71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135,
136}, {151, 152}, {15, 16}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47,
48}, {111, 112}, {143, 144}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {63,
64}, {191, 192}, {1, 135}, {81, 215}, {80, 214}, {73, 207}, {72, 206}, {65,
199}, {64, 198}, {57, 191}, {56, 190}, {8, 142}, {9, 143}, {16, 150}, {17, 151},
{24, 158}, {25, 159}, {32, 166}, {33, 167}, {40, 174}, {41, 175}, {48, 182},
{49, 183}, {88, 222}, {89, 223}, {96, 230}, {97, 231}, {104, 238}, {105, 239},
{112, 246}, {113, 247}, {120, 254}, {121, 255}, {1, 137}, {83, 219}, {82, 218},
{81, 217}, {80, 216}, {71, 207}, {70, 206}, {69, 205}, {68, 204}, {67, 203},
{66, 202}, {65, 201}, {64, 200}, {55, 191}, {54, 190}, {53, 189}, {52, 188},
{51, 187}, {50, 186}, {49, 185}, {2, 138}, {3, 139}, {4, 140}, {5, 141}, {6,
142}, {7, 143}, {16, 152}, {17, 153}, {18, 154}, {19, 155}, {20, 156}, {21,
157}, {22, 158}, {23, 159}, {32, 168}, {33, 169}, {34, 170}, {35, 171}, {36,
172}, {37, 173}, {38, 174}, {39, 175}, {48, 184}, {84, 220}, {85, 221}, {86,
222}, {87, 223}, {96, 232}, {97, 233}, {98, 234}, {99, 235}, {100, 236}, {101,
237}, {102, 238}, {103, 239}, {112, 248}, {113, 249}, {114, 250}, {115, 251},
{116, 252}, {117, 253}, {118, 254}, {119, 255}, {2, 136}, {83, 217}, {82, 216},
{71, 205}, {70, 204}, {67, 201}, {66, 200}, {55, 189}, {54, 188}, {51, 185},
{50, 184}, {3, 137}, {6, 140}, {7, 141}, {18, 152}, {19, 153}, {22, 156}, {23,
157}, {34, 168}, {35, 169}, {38, 172}, {39, 173}, {86, 220}, {87, 221}, {98,
232}, {99, 233}, {102, 236}, {103, 237}, {114, 248}, {115, 249}, {118, 252},
{119, 253}, {4, 138}, {69, 203}, {68, 202}, {53, 187}, {52, 186}, {5, 139}, {20,
154}, {21, 155}, {36, 170}, {37, 171}, {84, 218}, {85, 219}, {100, 234}, {101,
235}, {116, 250}, {117, 251}, {8, 144}, {79, 215}, {78, 214}, {77, 213}, {76,
212}, {75, 211}, {74, 210}, {73, 209}, {72, 208}, {9, 145}, {10, 146}, {11,
147}, {12, 148}, {13, 149}, {14, 150}, {15, 151}, {40, 176}, {41, 177}, {42,
178}, {43, 179}, {44, 180}, {45, 181}, {46, 182}, {47, 183}, {104, 240}, {105,
241}, {106, 242}, {107, 243}, {108, 244}, {109, 245}, {110, 246}, {111, 247},
{10, 144}, {79, 213}, {78, 212}, {75, 209}, {74, 208}, {11, 145}, {14, 148},
{15, 149}, {42, 176}, {43, 177}, {46, 180}, {47, 181}, {106, 240}, {107, 241},
{110, 244}, {111, 245}, {12, 146}, {77, 211}, {76, 210}, {13, 147}, {44, 178},
{45, 179}, {108, 242}, {109, 243}, {24, 160}, {25, 161}, {26, 162}, {27, 163},
{28, 164}, {29, 165}, {30, 166}, {31, 167}, {88, 224}, {89, 225}, {90, 226},
{91, 227}, {92, 228}, {93, 229}, {94, 230}, {95, 231}, {26, 160}, {27, 161},
{30, 164}, {31, 165}, {90, 224}, {91, 225}, {94, 228}, {95, 229}, {28, 162},
{29, 163}, {92, 226}, {93, 227}, {56, 192}, {63, 199}, {62, 198}, {61, 197},
{60, 196}, {59, 195}, {58, 194}, {57, 193}, {58, 192}, {63, 197}, {62, 196},
{59, 193}, {60, 194}, {61, 195}, {127, 128}, {1, 270}, {120, 256}, {121, 257},
{122, 258}, {123, 259}, {124, 260}, {125, 261}, {126, 262}, {127, 263}, {122,
256}, {123, 257}, {126, 260}, {127, 261}, {124, 258}, {125, 259}, {128, 262},
{129, 263}, {136, 270}, {128, 264}, {129, 265}, {130, 266}, {131, 267}, {132,
268}, {133, 269}, {134, 270}, {130, 264}, {131, 265}, {134, 268}, {135, 269},
{132, 266}, {133, 267}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (63, 198) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (133, 268)
c: (25, 160)
d: (123, 258)
e: (89, 224)
f: (7, 142)
g: (71, 206)
h: (17, 152)
m: (81, 216)
n1: (36, 171)
a1: (100, 235)
b1: (104, 239)
c1: (40, 175)
d1: (118, 253)
e1: (54, 189)
f1: (99, 234)
g1: (35, 170)
h1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135)(136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270)
m1: (131, 266)
n2: (66, 201)
a2: (2, 137)
b2: (110, 245)
c2: (46, 181)
d2: (28, 163)
e2: (92, 227)
f2: (14, 149)
g2: (78, 213)
h2: (27, 162)
m2: (91, 226)
n3: (122, 257)
a3: (2, 135)(3, 134)(4, 133)(5, 132)(6, 131)(7, 130)(8, 129)(9, 128)(10,
127)(11, 126)(12, 125)(13, 124)(14, 123)(15, 122)(16, 121)(17, 120)(18, 119)(19,
118)(20, 117)(21, 116)(22, 115)(23, 114)(24, 113)(25, 112)(26, 111)(27, 110)(28,
109)(29, 108)(30, 107)(31, 106)(32, 105)(33, 104)(34, 103)(35, 102)(36, 101)(37,
100)(38, 99)(39, 98)(40, 97)(41, 96)(42, 95)(43, 94)(44, 93)(45, 92)(46, 91)(47,
90)(48, 89)(49, 88)(50, 87)(51, 86)(52, 85)(53, 84)(54, 83)(55, 82)(56, 81)(57,
80)(58, 79)(59, 78)(60, 77)(61, 76)(62, 75)(63, 74)(64, 73)(65, 72)(66, 71)(67,
70)(68, 69)(137, 270)(138, 269)(139, 268)(140, 267)(141, 266)(142, 265)(143,
264)(144, 263)(145, 262)(146, 261)(147, 260)(148, 259)(149, 258)(150, 257)(151,
256)(152, 255)(153, 254)(154, 253)(155, 252)(156, 251)(157, 250)(158, 249)(159,
248)(160, 247)(161, 246)(162, 245)(163, 244)(164, 243)(165, 242)(166, 241)(167,
240)(168, 239)(169, 238)(170, 237)(171, 236)(172, 235)(173, 234)(174, 233)(175,
232)(176, 231)(177, 230)(178, 229)(179, 228)(180, 227)(181, 226)(182, 225)(183,
224)(184, 223)(185, 222)(186, 221)(187, 220)(188, 219)(189, 218)(190, 217)(191,
216)(192, 215)(193, 214)(194, 213)(195, 212)(196, 211)(197, 210)(198, 209)(199,
208)(200, 207)(201, 206)(202, 205)(203, 204)
b3: (8, 143)
c3: (72, 207)
d3: (134, 269)
e3: (33, 168)
f3: (97, 232)
g3: (9, 144)
h3: (79, 214)
m3: (15, 150)
n4: (73, 208)
a4: (23, 158)
b4: (87, 222)
c4: (30, 165)
d4: (94, 229)
e4: (38, 173)
f4: (102, 237)
g4: (61, 196)
h4: (16, 151)
m4: (80, 215)
n5: (101, 236)
a5: (37, 172)
b5: (103, 238)
c5: (39, 174)
d5: (11, 146)
e5: (75, 210)
f5: (119, 254)
g5: (55, 190)
h5: (12, 147)
m5: (58, 193)
n6: (76, 211)
a6: (125, 260)
b6: (135, 270)
c6: (32, 167)
d6: (96, 231)
e6: (3, 138)
f6: (83, 218)
g6: (19, 154)
h6: (112, 247)
m6: (86, 221)
n7: (22, 157)
a7: (48, 183)
b7: (60, 195)
c7: (113, 248)
d7: (49, 184)
e7: (21, 156)
f7: (85, 220)
g7: (121, 256)
h7: (57, 192)
m7: (116, 251)
n8: (52, 187)
a8: (64, 199)
b8: (13, 148)
c8: (77, 212)
d8: (130, 265)
e8: (20, 155)
f8: (84, 219)
g8: (34, 169)
h8: (98, 233)
m8: (120, 255)
n9: (93, 228)
a9: (29, 164)
b9: (56, 191)
c9: (62, 197)
d9: (109, 244)
e9: (45, 180)
f9: (126, 261)
g9: (31, 166)
h9: (95, 230)
m9: (132, 267)
n10: (53, 188)
a10: (117, 252)
b10: (124, 259)
c10: (5, 140)
d10: (69, 204)
e10: (107, 242)
f10: (43, 178)
g10: (10, 145)
h10: (74, 209)
m10: (6, 141)
n11: (70, 205)
a11: (106, 241)
b11: (42, 177)
c11: (115, 250)
d11: (51, 186)
e11: (65, 200)
f11: (105, 240)
g11: (41, 176)
h11: (4, 139)
m11: (68, 203)
n12: (128, 263)
a12: (18, 153)
b12: (82, 217)
c12: (114, 249)
d12: (59, 194)
e12: (50, 185)
f12: (129, 264)
g12: (127, 262)
h12: (108, 243)
m12: (44, 179)
n13: (111, 246)
a13: (47, 182)
b13: (24, 159)
c13: (88, 223)
d13: (26, 161)
e13: (90, 225)
C4[ 270, 1 ]
270
-1 2 135 137 270
-2 1 3 136 138
-3 2 4 137 139
-4 3 5 138 140
-5 4 6 139 141
-6 5 7 140 142
-7 143 6 8 141
-8 144 7 9 142
-9 143 145 8 10
-10 11 144 146 9
-11 12 145 147 10
-12 11 13 146 148
-13 12 14 147 149
-14 13 15 148 150
-15 14 16 149 151
-16 15 17 150 152
-17 16 18 151 153
-18 154 17 19 152
-19 155 18 20 153
-20 154 156 19 21
-21 22 155 157 20
-22 23 156 158 21
-23 22 24 157 159
-24 23 25 158 160
-25 24 26 159 161
-26 25 27 160 162
-27 26 28 161 163
-28 27 29 162 164
-29 165 28 30 163
-30 166 29 31 164
-31 165 167 30 32
-32 33 166 168 31
-33 34 167 169 32
-34 33 35 168 170
-35 34 36 169 171
-36 35 37 170 172
-37 36 38 171 173
-38 37 39 172 174
-39 38 40 173 175
-40 176 39 41 174
-41 177 40 42 175
-42 176 178 41 43
-43 44 177 179 42
-44 45 178 180 43
-45 44 46 179 181
-46 45 47 180 182
-47 46 48 181 183
-48 47 49 182 184
-49 48 50 183 185
-50 49 51 184 186
-51 187 50 52 185
-52 188 51 53 186
-53 187 189 52 54
-54 55 188 190 53
-55 56 189 191 54
-56 55 57 190 192
-57 56 58 191 193
-58 57 59 192 194
-59 58 60 193 195
-60 59 61 194 196
-61 60 62 195 197
-62 198 61 63 196
-63 199 62 64 197
-64 198 200 63 65
-65 66 199 201 64
-66 67 200 202 65
-67 66 68 201 203
-68 67 69 202 204
-69 68 70 203 205
-70 69 71 204 206
-71 70 72 205 207
-72 71 73 206 208
-73 209 72 74 207
-74 210 73 75 208
-75 209 211 74 76
-76 77 210 212 75
-77 78 211 213 76
-78 77 79 212 214
-79 78 80 213 215
-80 79 81 214 216
-81 80 82 215 217
-82 81 83 216 218
-83 82 84 217 219
-84 220 83 85 218
-85 221 84 86 219
-86 220 222 85 87
-87 88 221 223 86
-88 89 222 224 87
-89 88 90 223 225
-90 89 91 224 226
-91 90 92 225 227
-92 91 93 226 228
-93 92 94 227 229
-94 93 95 228 230
-95 231 94 96 229
-96 232 95 97 230
-97 231 233 96 98
-98 99 232 234 97
-99 100 233 235 98
-100 99 101 234 236
-101 100 102 235 237
-102 101 103 236 238
-103 102 104 237 239
-104 103 105 238 240
-105 104 106 239 241
-106 242 105 107 240
-107 243 106 108 241
-108 242 244 107 109
-109 110 243 245 108
-110 111 244 246 109
-111 110 112 245 247
-112 111 113 246 248
-113 112 114 247 249
-114 113 115 248 250
-115 114 116 249 251
-116 115 117 250 252
-117 253 116 118 251
-118 254 117 119 252
-119 253 255 118 120
-120 121 254 256 119
-121 122 255 257 120
-122 121 123 256 258
-123 122 124 257 259
-124 123 125 258 260
-125 124 126 259 261
-126 125 127 260 262
-127 126 128 261 263
-128 264 127 129 262
-129 265 128 130 263
-130 264 266 129 131
-131 132 265 267 130
-132 133 266 268 131
-133 132 134 267 269
-134 133 135 268 270
-135 1 134 136 269
-136 2 135 137 270
-137 1 3 136 138
-138 2 4 137 139
-139 3 5 138 140
-140 4 6 139 141
-141 5 7 140 142
-142 143 6 8 141
-143 144 7 9 142
-144 143 145 8 10
-145 11 144 146 9
-146 12 145 147 10
-147 11 13 146 148
-148 12 14 147 149
-149 13 15 148 150
-150 14 16 149 151
-151 15 17 150 152
-152 16 18 151 153
-153 154 17 19 152
-154 155 18 20 153
-155 154 156 19 21
-156 22 155 157 20
-157 23 156 158 21
-158 22 24 157 159
-159 23 25 158 160
-160 24 26 159 161
-161 25 27 160 162
-162 26 28 161 163
-163 27 29 162 164
-164 165 28 30 163
-165 166 29 31 164
-166 165 167 30 32
-167 33 166 168 31
-168 34 167 169 32
-169 33 35 168 170
-170 34 36 169 171
-171 35 37 170 172
-172 36 38 171 173
-173 37 39 172 174
-174 38 40 173 175
-175 176 39 41 174
-176 177 40 42 175
-177 176 178 41 43
-178 44 177 179 42
-179 45 178 180 43
-180 44 46 179 181
-181 45 47 180 182
-182 46 48 181 183
-183 47 49 182 184
-184 48 50 183 185
-185 49 51 184 186
-186 187 50 52 185
-187 188 51 53 186
-188 187 189 52 54
-189 55 188 190 53
-190 56 189 191 54
-191 55 57 190 192
-192 56 58 191 193
-193 57 59 192 194
-194 58 60 193 195
-195 59 61 194 196
-196 60 62 195 197
-197 198 61 63 196
-198 199 62 64 197
-199 198 200 63 65
-200 66 199 201 64
-201 67 200 202 65
-202 66 68 201 203
-203 67 69 202 204
-204 68 70 203 205
-205 69 71 204 206
-206 70 72 205 207
-207 71 73 206 208
-208 209 72 74 207
-209 210 73 75 208
-210 209 211 74 76
-211 77 210 212 75
-212 78 211 213 76
-213 77 79 212 214
-214 78 80 213 215
-215 79 81 214 216
-216 80 82 215 217
-217 81 83 216 218
-218 82 84 217 219
-219 220 83 85 218
-220 221 84 86 219
-221 220 222 85 87
-222 88 221 223 86
-223 89 222 224 87
-224 88 90 223 225
-225 89 91 224 226
-226 90 92 225 227
-227 91 93 226 228
-228 92 94 227 229
-229 93 95 228 230
-230 231 94 96 229
-231 232 95 97 230
-232 231 233 96 98
-233 99 232 234 97
-234 100 233 235 98
-235 99 101 234 236
-236 100 102 235 237
-237 101 103 236 238
-238 102 104 237 239
-239 103 105 238 240
-240 104 106 239 241
-241 242 105 107 240
-242 243 106 108 241
-243 242 244 107 109
-244 110 243 245 108
-245 111 244 246 109
-246 110 112 245 247
-247 111 113 246 248
-248 112 114 247 249
-249 113 115 248 250
-250 114 116 249 251
-251 115 117 250 252
-252 253 116 118 251
-253 254 117 119 252
-254 253 255 118 120
-255 121 254 256 119
-256 122 255 257 120
-257 121 123 256 258
-258 122 124 257 259
-259 123 125 258 260
-260 124 126 259 261
-261 125 127 260 262
-262 126 128 261 263
-263 264 127 129 262
-264 265 128 130 263
-265 264 266 129 131
-266 132 265 267 130
-267 133 266 268 131
-268 132 134 267 269
-269 133 135 268 270
-270 1 134 136 269
0