C4graphGraph forms for C4 [ 270, 2 ] = C_270(1,109)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 270, 2 ] = C_270(1,109).

(I) Following is a form readable by MAGMA:

g:=Graph<270|{ {2, 3}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {1, 2}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {3, 4}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {2, 111}, {16, 125}, {18, 127}, {128, 237}, {130, 239}, {144, 253}, {146, 255}, {1, 110}, {17, 126}, {129, 238}, {145, 254}, {3, 112}, {7, 116}, {11, 120}, {15, 124}, {131, 240}, {135, 244}, {139, 248}, {143, 252}, {4, 113}, {6, 115}, {12, 121}, {14, 123}, {132, 241}, {134, 243}, {140, 249}, {142, 251}, {5, 114}, {13, 122}, {133, 242}, {141, 250}, {8, 117}, {10, 119}, {136, 245}, {138, 247}, {9, 118}, {191, 192}, {63, 64}, {137, 246}, {19, 128}, {87, 196}, {83, 192}, {63, 172}, {59, 168}, {23, 132}, {27, 136}, {31, 140}, {51, 160}, {55, 164}, {91, 200}, {95, 204}, {115, 224}, {119, 228}, {123, 232}, {127, 236}, {20, 129}, {86, 195}, {84, 193}, {62, 171}, {60, 169}, {22, 131}, {28, 137}, {30, 139}, {52, 161}, {54, 163}, {92, 201}, {94, 203}, {116, 225}, {118, 227}, {124, 233}, {126, 235}, {21, 130}, {85, 194}, {61, 170}, {29, 138}, {53, 162}, {93, 202}, {117, 226}, {125, 234}, {24, 133}, {90, 199}, {88, 197}, {58, 167}, {56, 165}, {26, 135}, {120, 229}, {122, 231}, {25, 134}, {89, 198}, {57, 166}, {121, 230}, {2, 163}, {88, 249}, {86, 247}, {84, 245}, {82, 243}, {80, 241}, {78, 239}, {76, 237}, {74, 235}, {72, 233}, {70, 231}, {68, 229}, {66, 227}, {64, 225}, {4, 165}, {6, 167}, {8, 169}, {10, 171}, {12, 173}, {14, 175}, {16, 177}, {18, 179}, {20, 181}, {22, 183}, {24, 185}, {26, 187}, {28, 189}, {30, 191}, {90, 251}, {92, 253}, {94, 255}, {1, 162}, {89, 250}, {85, 246}, {81, 242}, {77, 238}, {73, 234}, {69, 230}, {65, 226}, {5, 166}, {9, 170}, {13, 174}, {17, 178}, {21, 182}, {25, 186}, {29, 190}, {93, 254}, {3, 164}, {83, 244}, {75, 236}, {67, 228}, {11, 172}, {19, 180}, {27, 188}, {91, 252}, {32, 141}, {34, 143}, {48, 157}, {50, 159}, {96, 205}, {98, 207}, {112, 221}, {114, 223}, {7, 168}, {87, 248}, {71, 232}, {23, 184}, {33, 142}, {49, 158}, {97, 206}, {113, 222}, {35, 144}, {39, 148}, {43, 152}, {47, 156}, {99, 208}, {103, 212}, {107, 216}, {111, 220}, {36, 145}, {38, 147}, {44, 153}, {46, 155}, {100, 209}, {102, 211}, {108, 217}, {110, 219}, {37, 146}, {45, 154}, {101, 210}, {109, 218}, {40, 149}, {42, 151}, {104, 213}, {106, 215}, {15, 176}, {79, 240}, {41, 150}, {105, 214}, {31, 192}, {63, 224}, {32, 193}, {62, 223}, {60, 221}, {58, 219}, {56, 217}, {34, 195}, {36, 197}, {38, 199}, {40, 201}, {42, 203}, {44, 205}, {46, 207}, {48, 209}, {50, 211}, {52, 213}, {54, 215}, {33, 194}, {61, 222}, {57, 218}, {37, 198}, {41, 202}, {45, 206}, {49, 210}, {53, 214}, {35, 196}, {59, 220}, {43, 204}, {51, 212}, {64, 173}, {82, 191}, {80, 189}, {66, 175}, {39, 200}, {81, 190}, {65, 174}, {55, 216}, {67, 176}, {79, 188}, {75, 184}, {71, 180}, {68, 177}, {78, 187}, {76, 185}, {70, 179}, {69, 178}, {77, 186}, {72, 181}, {74, 183}, {47, 208}, {73, 182}, {127, 128}, {1, 270}, {95, 256}, {96, 257}, {98, 259}, {100, 261}, {102, 263}, {104, 265}, {106, 267}, {108, 269}, {97, 258}, {101, 262}, {105, 266}, {109, 270}, {99, 260}, {107, 268}, {103, 264}, {147, 256}, {151, 260}, {155, 264}, {159, 268}, {148, 257}, {150, 259}, {156, 265}, {158, 267}, {149, 258}, {157, 266}, {152, 261}, {154, 263}, {153, 262}, {160, 269}, {161, 270}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 162)(3, 53)(4, 214)(5, 105)(6, 266)(7, 157)(8, 48)(9, 209)(10, 100)(11, 261)(12, 152)(13, 43)(14, 204)(15, 95)(16, 256)(17, 147)(18, 38)(19, 199)(20, 90)(21, 251)(22, 142)(23, 33)(24, 194)(25, 85)(26, 246)(27, 137)(29, 189)(30, 80)(31, 241)(32, 132)(34, 184)(35, 75)(36, 236)(37, 127)(39, 179)(40, 70)(41, 231)(42, 122)(44, 174)(45, 65)(46, 226)(47, 117)(49, 169)(50, 60)(51, 221)(52, 112)(54, 164)(56, 216)(57, 107)(58, 268)(59, 159)(61, 211)(62, 102)(63, 263)(64, 154)(66, 206)(67, 97)(68, 258)(69, 149)(71, 201)(72, 92)(73, 253)(74, 144)(76, 196)(77, 87)(78, 248)(79, 139)(81, 191)(83, 243)(84, 134)(86, 186)(88, 238)(89, 129)(91, 181)(93, 233)(94, 124)(96, 176)(98, 228)(99, 119)(101, 171)(103, 223)(104, 114)(106, 166)(108, 218)(110, 270)(111, 161)(113, 213)(115, 265)(116, 156)(118, 208)(120, 260)(121, 151)(123, 203)(125, 255)(126, 146)(128, 198)(130, 250)(131, 141)(133, 193)(135, 245)(138, 188)(140, 240)(143, 183)(145, 235)(148, 178)(150, 230)(153, 173)(155, 225)(158, 168)(160, 220)(165, 215)(167, 267)(170, 210)(172, 262)(175, 205)(177, 257)(180, 200)(182, 252)(185, 195)(187, 247)(192, 242)(197, 237)(202, 232)(207, 227)(212, 222)(219, 269)(224, 264)(229, 259)(234, 254)(239, 249)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270)
c: (2, 110)(3, 219)(4, 58)(5, 167)(7, 115)(8, 224)(9, 63)(10, 172)(12, 120)(13, 229)(14, 68)(15, 177)(17, 125)(18, 234)(19, 73)(20, 182)(22, 130)(23, 239)(24, 78)(25, 187)(27, 135)(28, 244)(29, 83)(30, 192)(32, 140)(33, 249)(34, 88)(35, 197)(37, 145)(38, 254)(39, 93)(40, 202)(42, 150)(43, 259)(44, 98)(45, 207)(47, 155)(48, 264)(49, 103)(50, 212)(52, 160)(53, 269)(54, 108)(55, 217)(57, 165)(59, 113)(60, 222)(62, 170)(64, 118)(65, 227)(67, 175)(69, 123)(70, 232)(72, 180)(74, 128)(75, 237)(77, 185)(79, 133)(80, 242)(82, 190)(84, 138)(85, 247)(87, 195)(89, 143)(90, 252)(92, 200)(94, 148)(95, 257)(97, 205)(99, 153)(100, 262)(102, 210)(104, 158)(105, 267)(107, 215)(109, 163)(112, 220)(114, 168)(117, 225)(119, 173)(122, 230)(124, 178)(127, 235)(129, 183)(132, 240)(134, 188)(137, 245)(139, 193)(142, 250)(144, 198)(147, 255)(149, 203)(152, 260)(154, 208)(157, 265)(159, 213)(162, 270)(164, 218)(169, 223)(174, 228)(179, 233)(184, 238)(189, 243)(194, 248)(199, 253)(204, 258)(209, 263)(214, 268)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 270, 2 ]
270
-1 110 2 270 162
-2 1 111 3 163
-3 2 112 4 164
-4 165 3 113 5
-5 166 4 114 6
-6 167 5 115 7
-7 168 6 116 8
-8 169 7 117 9
-9 170 8 118 10
-10 11 171 9 119
-11 12 172 10 120
-12 11 121 13 173
-13 12 122 14 174
-14 13 123 15 175
-15 176 14 124 16
-16 177 15 125 17
-17 178 16 126 18
-18 179 17 127 19
-19 180 18 128 20
-20 181 19 129 21
-21 22 182 20 130
-22 23 183 21 131
-23 22 132 24 184
-24 23 133 25 185
-25 24 134 26 186
-26 187 25 135 27
-27 188 26 136 28
-28 189 27 137 29
-29 190 28 138 30
-30 191 29 139 31
-31 192 30 140 32
-32 33 193 31 141
-33 34 194 32 142
-34 33 143 35 195
-35 34 144 36 196
-36 35 145 37 197
-37 198 36 146 38
-38 199 37 147 39
-39 200 38 148 40
-40 201 39 149 41
-41 202 40 150 42
-42 203 41 151 43
-43 44 204 42 152
-44 45 205 43 153
-45 44 154 46 206
-46 45 155 47 207
-47 46 156 48 208
-48 209 47 157 49
-49 210 48 158 50
-50 211 49 159 51
-51 212 50 160 52
-52 213 51 161 53
-53 214 52 162 54
-54 55 215 53 163
-55 56 216 54 164
-56 55 165 57 217
-57 56 166 58 218
-58 57 167 59 219
-59 220 58 168 60
-60 221 59 169 61
-61 222 60 170 62
-62 223 61 171 63
-63 224 62 172 64
-64 225 63 173 65
-65 66 226 64 174
-66 67 227 65 175
-67 66 176 68 228
-68 67 177 69 229
-69 68 178 70 230
-70 231 69 179 71
-71 232 70 180 72
-72 233 71 181 73
-73 234 72 182 74
-74 235 73 183 75
-75 236 74 184 76
-76 77 237 75 185
-77 78 238 76 186
-78 77 187 79 239
-79 78 188 80 240
-80 79 189 81 241
-81 242 80 190 82
-82 243 81 191 83
-83 244 82 192 84
-84 245 83 193 85
-85 246 84 194 86
-86 247 85 195 87
-87 88 248 86 196
-88 89 249 87 197
-89 88 198 90 250
-90 89 199 91 251
-91 90 200 92 252
-92 253 91 201 93
-93 254 92 202 94
-94 255 93 203 95
-95 256 94 204 96
-96 257 95 205 97
-97 258 96 206 98
-98 99 259 97 207
-99 100 260 98 208
-100 99 209 101 261
-101 100 210 102 262
-102 101 211 103 263
-103 264 102 212 104
-104 265 103 213 105
-105 266 104 214 106
-106 267 105 215 107
-107 268 106 216 108
-108 269 107 217 109
-109 110 270 108 218
-110 1 111 109 219
-111 110 220 2 112
-112 111 221 3 113
-113 112 222 4 114
-114 113 223 5 115
-115 114 224 6 116
-116 115 225 7 117
-117 116 226 8 118
-118 117 227 9 119
-119 118 228 10 120
-120 11 121 119 229
-121 12 122 120 230
-122 121 231 13 123
-123 122 232 14 124
-124 123 233 15 125
-125 124 234 16 126
-126 125 235 17 127
-127 126 236 18 128
-128 127 237 19 129
-129 128 238 20 130
-130 129 239 21 131
-131 22 132 130 240
-132 23 133 131 241
-133 132 242 24 134
-134 133 243 25 135
-135 134 244 26 136
-136 135 245 27 137
-137 136 246 28 138
-138 137 247 29 139
-139 138 248 30 140
-140 139 249 31 141
-141 140 250 32 142
-142 33 143 141 251
-143 34 144 142 252
-144 143 253 35 145
-145 144 254 36 146
-146 145 255 37 147
-147 146 256 38 148
-148 147 257 39 149
-149 148 258 40 150
-150 149 259 41 151
-151 150 260 42 152
-152 151 261 43 153
-153 44 154 152 262
-154 45 155 153 263
-155 154 264 46 156
-156 155 265 47 157
-157 156 266 48 158
-158 157 267 49 159
-159 158 268 50 160
-160 159 269 51 161
-161 160 270 52 162
-162 1 161 53 163
-163 2 162 54 164
-164 55 165 3 163
-165 56 166 4 164
-166 165 57 167 5
-167 166 58 168 6
-168 167 59 169 7
-169 168 60 170 8
-170 169 61 171 9
-171 170 62 172 10
-172 11 171 63 173
-173 12 172 64 174
-174 13 173 65 175
-175 66 176 14 174
-176 67 177 15 175
-177 176 68 178 16
-178 177 69 179 17
-179 178 70 180 18
-180 179 71 181 19
-181 180 72 182 20
-182 181 73 183 21
-183 22 182 74 184
-184 23 183 75 185
-185 24 184 76 186
-186 77 187 25 185
-187 78 188 26 186
-188 187 79 189 27
-189 188 80 190 28
-190 189 81 191 29
-191 190 82 192 30
-192 191 83 193 31
-193 192 84 194 32
-194 33 193 85 195
-195 34 194 86 196
-196 35 195 87 197
-197 88 198 36 196
-198 89 199 37 197
-199 198 90 200 38
-200 199 91 201 39
-201 200 92 202 40
-202 201 93 203 41
-203 202 94 204 42
-204 203 95 205 43
-205 44 204 96 206
-206 45 205 97 207
-207 46 206 98 208
-208 99 209 47 207
-209 100 210 48 208
-210 209 101 211 49
-211 210 102 212 50
-212 211 103 213 51
-213 212 104 214 52
-214 213 105 215 53
-215 214 106 216 54
-216 55 215 107 217
-217 56 216 108 218
-218 57 217 109 219
-219 110 220 58 218
-220 111 221 59 219
-221 220 112 222 60
-222 221 113 223 61
-223 222 114 224 62
-224 223 115 225 63
-225 224 116 226 64
-226 225 117 227 65
-227 66 226 118 228
-228 67 227 119 229
-229 68 228 120 230
-230 121 231 69 229
-231 122 232 70 230
-232 231 123 233 71
-233 232 124 234 72
-234 233 125 235 73
-235 234 126 236 74
-236 235 127 237 75
-237 236 128 238 76
-238 77 237 129 239
-239 78 238 130 240
-240 79 239 131 241
-241 132 242 80 240
-242 133 243 81 241
-243 242 134 244 82
-244 243 135 245 83
-245 244 136 246 84
-246 245 137 247 85
-247 246 138 248 86
-248 247 139 249 87
-249 88 248 140 250
-250 89 249 141 251
-251 90 250 142 252
-252 143 253 91 251
-253 144 254 92 252
-254 253 145 255 93
-255 254 146 256 94
-256 255 147 257 95
-257 256 148 258 96
-258 257 149 259 97
-259 258 150 260 98
-260 99 259 151 261
-261 100 260 152 262
-262 101 261 153 263
-263 154 264 102 262
-264 155 265 103 263
-265 264 156 266 104
-266 265 157 267 105
-267 266 158 268 106
-268 267 159 269 107
-269 268 160 270 108
-270 1 269 161 109
0

**************