[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 270, 4 ] =
{4,4}_[15,9].
(I) Following is a form readable by MAGMA:
g:=Graph<270|{ {2, 3}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260,
261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249},
{246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234,
235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223},
{220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208,
209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {98, 99}, {96, 97}, {94,
95}, {92, 93}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76,
77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60,
61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17},
{18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33},
{34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49},
{50, 51}, {52, 53}, {54, 55}, {56, 57}, {100, 101}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118,
119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131},
{132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144,
145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157},
{158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170,
171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {182, 183}, {184, 185},
{186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198,
199}, {1, 2}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249,
250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226},
{221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {97,
98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65,
66}, {61, 62}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29,
30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {101,
102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126},
{129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153,
154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178},
{181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {3, 4}, {267, 268},
{259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211,
212}, {203, 204}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12},
{19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115,
116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164},
{171, 172}, {179, 180}, {187, 188}, {195, 196}, {7, 8}, {263, 264}, {247, 248},
{231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55,
56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184},
{15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144},
{175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {1, 91}, {4, 94}, {5,
95}, {32, 122}, {33, 123}, {36, 126}, {37, 127}, {128, 218}, {129, 219}, {132,
222}, {133, 223}, {160, 250}, {161, 251}, {164, 254}, {165, 255}, {1, 90}, {2,
92}, {3, 93}, {34, 124}, {35, 125}, {130, 220}, {131, 221}, {162, 252}, {163,
253}, {6, 96}, {7, 97}, {14, 104}, {15, 105}, {22, 112}, {23, 113}, {30, 120},
{31, 121}, {134, 224}, {135, 225}, {142, 232}, {143, 233}, {150, 240}, {151,
241}, {158, 248}, {159, 249}, {8, 98}, {9, 99}, {12, 102}, {13, 103}, {24, 114},
{25, 115}, {28, 118}, {29, 119}, {136, 226}, {137, 227}, {140, 230}, {141, 231},
{152, 242}, {153, 243}, {156, 246}, {157, 247}, {10, 100}, {11, 101}, {26, 116},
{27, 117}, {138, 228}, {139, 229}, {154, 244}, {155, 245}, {16, 106}, {17, 107},
{20, 110}, {21, 111}, {144, 234}, {145, 235}, {148, 238}, {149, 239}, {18, 108},
{19, 109}, {146, 236}, {147, 237}, {63, 64}, {191, 192}, {61, 184}, {87, 210},
{85, 208}, {79, 202}, {77, 200}, {71, 194}, {69, 192}, {63, 186}, {62, 185},
{86, 209}, {78, 201}, {70, 193}, {60, 183}, {88, 211}, {76, 199}, {72, 195},
{59, 182}, {89, 212}, {75, 198}, {73, 196}, {58, 181}, {90, 213}, {74, 197},
{80, 203}, {84, 207}, {81, 204}, {83, 206}, {82, 205}, {38, 128}, {63, 153},
{62, 152}, {39, 129}, {46, 136}, {47, 137}, {54, 144}, {55, 145}, {102, 192},
{103, 193}, {110, 200}, {111, 201}, {118, 208}, {119, 209}, {126, 216}, {127,
217}, {40, 130}, {61, 151}, {60, 150}, {57, 147}, {41, 131}, {44, 134}, {45,
135}, {56, 146}, {104, 194}, {105, 195}, {108, 198}, {109, 199}, {120, 210},
{121, 211}, {124, 214}, {125, 215}, {42, 132}, {59, 149}, {58, 148}, {43, 133},
{106, 196}, {107, 197}, {122, 212}, {123, 213}, {48, 138}, {49, 139}, {52, 142},
{53, 143}, {112, 202}, {113, 203}, {116, 206}, {117, 207}, {50, 140}, {51, 141},
{114, 204}, {115, 205}, {2, 215}, {8, 221}, {10, 223}, {32, 245}, {34, 247},
{40, 253}, {42, 255}, {1, 214}, {9, 222}, {33, 246}, {41, 254}, {64, 154}, {97,
187}, {96, 186}, {69, 159}, {68, 158}, {65, 155}, {100, 190}, {101, 191}, {3,
216}, {7, 220}, {35, 248}, {39, 252}, {4, 217}, {6, 219}, {36, 249}, {38, 251},
{66, 156}, {67, 157}, {98, 188}, {99, 189}, {5, 218}, {37, 250}, {70, 160}, {95,
185}, {94, 184}, {87, 177}, {86, 176}, {79, 169}, {78, 168}, {71, 161}, {72,
162}, {93, 183}, {92, 182}, {89, 179}, {88, 178}, {77, 167}, {76, 166}, {73,
163}, {11, 224}, {15, 228}, {27, 240}, {31, 244}, {12, 225}, {14, 227}, {28,
241}, {30, 243}, {74, 164}, {91, 181}, {90, 180}, {75, 165}, {13, 226}, {91,
180}, {29, 242}, {16, 229}, {18, 231}, {24, 237}, {26, 239}, {17, 230}, {25,
238}, {80, 170}, {85, 175}, {84, 174}, {81, 171}, {19, 232}, {68, 191}, {64,
187}, {23, 236}, {20, 233}, {67, 190}, {65, 188}, {22, 235}, {82, 172}, {83,
173}, {21, 234}, {66, 189}, {127, 128}, {43, 256}, {47, 260}, {44, 257}, {46,
259}, {45, 258}, {48, 261}, {50, 263}, {56, 269}, {49, 262}, {57, 270}, {51,
264}, {55, 268}, {52, 265}, {54, 267}, {53, 266}, {166, 256}, {167, 257}, {174,
264}, {175, 265}, {168, 258}, {169, 259}, {172, 262}, {173, 263}, {170, 260},
{171, 261}, {176, 266}, {177, 267}, {180, 270}, {181, 270}, {178, 268}, {179,
269}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 214)(3, 124)(4, 34)(5, 247)(6, 157)(7, 67)(8, 190)(9, 100)(11, 223)(12,
133)(13, 43)(14, 256)(15, 166)(16, 76)(17, 199)(18, 109)(20, 232)(21, 142)(22,
52)(23, 265)(24, 175)(25, 85)(26, 208)(27, 118)(29, 241)(30, 151)(31, 61)(32,
184)(33, 94)(35, 217)(36, 127)(38, 250)(39, 160)(40, 70)(41, 193)(42, 103)(44,
226)(45, 136)(47, 259)(48, 169)(49, 79)(50, 202)(51, 112)(53, 235)(54, 145)(56,
268)(57, 178)(58, 88)(59, 211)(60, 121)(62, 244)(63, 154)(65, 187)(66, 97)(68,
220)(69, 130)(71, 253)(72, 163)(74, 196)(75, 106)(77, 229)(78, 139)(80, 262)(81,
172)(83, 205)(84, 115)(86, 238)(87, 148)(89, 181)(90, 91)(92, 213)(93, 123)(95,
246)(96, 156)(98, 189)(101, 222)(102, 132)(104, 255)(105, 165)(107, 198)(110,
231)(111, 141)(113, 264)(114, 174)(116, 207)(119, 240)(120, 150)(122, 183)(125,
216)(128, 249)(129, 159)(131, 192)(134, 225)(137, 258)(138, 168)(140, 201)(143,
234)(146, 267)(147, 177)(149, 210)(152, 243)(155, 186)(158, 219)(161, 252)(164,
195)(167, 228)(170, 261)(173, 204)(176, 237)(179, 270)(182, 212)(185, 245)(191,
221)(194, 254)(200, 230)(203, 263)(209, 239)(218, 248)(227, 257)(236, 266) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,
244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270)
c: (2, 91)(3, 181)(4, 58)(5, 148)(6, 238)(7, 25)(8, 115)(9, 205)(10, 82)(11,
172)(12, 262)(13, 49)(14, 139)(15, 229)(17, 106)(18, 196)(19, 73)(20, 163)(21,
253)(22, 40)(23, 130)(24, 220)(26, 97)(27, 187)(28, 64)(29, 154)(30, 244)(32,
121)(33, 211)(34, 88)(35, 178)(36, 268)(37, 55)(38, 145)(39, 235)(41, 112)(42,
202)(43, 79)(44, 169)(45, 259)(47, 136)(48, 226)(50, 103)(51, 193)(52, 70)(53,
160)(54, 250)(56, 127)(57, 217)(59, 94)(60, 184)(62, 151)(63, 241)(65, 118)(66,
208)(67, 85)(68, 175)(69, 265)(71, 142)(72, 232)(74, 109)(75, 199)(77, 166)(78,
256)(80, 133)(81, 223)(83, 100)(84, 190)(86, 157)(87, 247)(89, 124)(90, 214)(93,
182)(95, 149)(96, 239)(98, 116)(99, 206)(101, 173)(102, 263)(104, 140)(105,
230)(108, 197)(110, 164)(111, 254)(113, 131)(114, 221)(117, 188)(119, 155)(120,
245)(123, 212)(125, 179)(126, 269)(128, 146)(129, 236)(132, 203)(134, 170)(135,
260)(138, 227)(141, 194)(143, 161)(144, 251)(147, 218)(150, 185)(153, 242)(156,
209)(158, 176)(159, 266)(162, 233)(165, 200)(168, 257)(171, 224)(174, 191)(177,
248)(180, 215)(186, 240)(189, 207)(192, 264)(195, 231)(201, 255)(204, 222)(210,
246)(216, 270)(219, 237)(225, 261)(234, 252)(249, 267)
C4[ 270, 4 ]
270
-1 2 90 91 214
-2 1 3 92 215
-3 2 4 93 216
-4 3 5 94 217
-5 4 6 95 218
-6 5 7 96 219
-7 220 6 8 97
-8 221 7 9 98
-9 99 222 8 10
-10 11 100 223 9
-11 12 101 224 10
-12 11 13 102 225
-13 12 14 103 226
-14 13 15 104 227
-15 14 16 105 228
-16 15 17 106 229
-17 16 18 107 230
-18 231 17 19 108
-19 232 18 20 109
-20 110 233 19 21
-21 22 111 234 20
-22 23 112 235 21
-23 22 24 113 236
-24 23 25 114 237
-25 24 26 115 238
-26 25 27 116 239
-27 26 28 117 240
-28 27 29 118 241
-29 242 28 30 119
-30 243 29 31 120
-31 121 244 30 32
-32 33 122 245 31
-33 34 123 246 32
-34 33 35 124 247
-35 34 36 125 248
-36 35 37 126 249
-37 36 38 127 250
-38 37 39 128 251
-39 38 40 129 252
-40 253 39 41 130
-41 254 40 42 131
-42 132 255 41 43
-43 44 133 256 42
-44 45 134 257 43
-45 44 46 135 258
-46 45 47 136 259
-47 46 48 137 260
-48 47 49 138 261
-49 48 50 139 262
-50 49 51 140 263
-51 264 50 52 141
-52 265 51 53 142
-53 143 266 52 54
-54 55 144 267 53
-55 56 145 268 54
-56 55 57 146 269
-57 56 58 147 270
-58 57 59 148 181
-59 58 60 149 182
-60 59 61 150 183
-61 60 62 151 184
-62 61 63 152 185
-63 62 64 153 186
-64 154 187 63 65
-65 66 155 188 64
-66 67 156 189 65
-67 66 68 157 190
-68 67 69 158 191
-69 68 70 159 192
-70 69 71 160 193
-71 70 72 161 194
-72 71 73 162 195
-73 72 74 163 196
-74 73 75 164 197
-75 165 198 74 76
-76 77 166 199 75
-77 78 167 200 76
-78 77 79 168 201
-79 78 80 169 202
-80 79 81 170 203
-81 80 82 171 204
-82 81 83 172 205
-83 82 84 173 206
-84 83 85 174 207
-85 84 86 175 208
-86 176 209 85 87
-87 88 177 210 86
-88 89 178 211 87
-89 88 90 179 212
-90 1 89 180 213
-91 1 92 180 181
-92 2 91 93 182
-93 3 92 94 183
-94 4 93 95 184
-95 5 94 96 185
-96 6 95 97 186
-97 187 7 96 98
-98 99 188 8 97
-99 100 189 9 98
-100 99 101 190 10
-101 11 100 102 191
-102 12 101 103 192
-103 13 102 104 193
-104 14 103 105 194
-105 15 104 106 195
-106 16 105 107 196
-107 17 106 108 197
-108 198 18 107 109
-109 110 199 19 108
-110 111 200 20 109
-111 110 112 201 21
-112 22 111 113 202
-113 23 112 114 203
-114 24 113 115 204
-115 25 114 116 205
-116 26 115 117 206
-117 27 116 118 207
-118 28 117 119 208
-119 209 29 118 120
-120 121 210 30 119
-121 122 211 31 120
-122 121 123 212 32
-123 33 122 124 213
-124 34 123 125 214
-125 35 124 126 215
-126 36 125 127 216
-127 37 126 128 217
-128 38 127 129 218
-129 39 128 130 219
-130 220 40 129 131
-131 132 221 41 130
-132 133 222 42 131
-133 132 134 223 43
-134 44 133 135 224
-135 45 134 136 225
-136 46 135 137 226
-137 47 136 138 227
-138 48 137 139 228
-139 49 138 140 229
-140 50 139 141 230
-141 231 51 140 142
-142 143 232 52 141
-143 144 233 53 142
-144 143 145 234 54
-145 55 144 146 235
-146 56 145 147 236
-147 57 146 148 237
-148 58 147 149 238
-149 59 148 150 239
-150 60 149 151 240
-151 61 150 152 241
-152 242 62 151 153
-153 154 243 63 152
-154 155 244 64 153
-155 154 156 245 65
-156 66 155 157 246
-157 67 156 158 247
-158 68 157 159 248
-159 69 158 160 249
-160 70 159 161 250
-161 71 160 162 251
-162 72 161 163 252
-163 253 73 162 164
-164 165 254 74 163
-165 166 255 75 164
-166 165 167 256 76
-167 77 166 168 257
-168 78 167 169 258
-169 79 168 170 259
-170 80 169 171 260
-171 81 170 172 261
-172 82 171 173 262
-173 83 172 174 263
-174 264 84 173 175
-175 176 265 85 174
-176 177 266 86 175
-177 176 178 267 87
-178 88 177 179 268
-179 89 178 180 269
-180 90 91 179 270
-181 58 91 182 270
-182 59 92 181 183
-183 60 93 182 184
-184 61 94 183 185
-185 62 95 184 186
-186 187 63 96 185
-187 188 64 97 186
-188 187 189 65 98
-189 66 99 188 190
-190 67 100 189 191
-191 68 101 190 192
-192 69 102 191 193
-193 70 103 192 194
-194 71 104 193 195
-195 72 105 194 196
-196 73 106 195 197
-197 198 74 107 196
-198 199 75 108 197
-199 198 200 76 109
-200 77 110 199 201
-201 78 111 200 202
-202 79 112 201 203
-203 80 113 202 204
-204 81 114 203 205
-205 82 115 204 206
-206 83 116 205 207
-207 84 117 206 208
-208 209 85 118 207
-209 210 86 119 208
-210 209 211 87 120
-211 88 121 210 212
-212 89 122 211 213
-213 90 123 212 214
-214 1 124 213 215
-215 2 125 214 216
-216 3 126 215 217
-217 4 127 216 218
-218 5 128 217 219
-219 220 6 129 218
-220 221 7 130 219
-221 220 222 8 131
-222 132 221 223 9
-223 133 222 224 10
-224 11 134 223 225
-225 12 135 224 226
-226 13 136 225 227
-227 14 137 226 228
-228 15 138 227 229
-229 16 139 228 230
-230 231 17 140 229
-231 232 18 141 230
-232 231 233 19 142
-233 143 232 234 20
-234 144 233 235 21
-235 22 145 234 236
-236 23 146 235 237
-237 24 147 236 238
-238 25 148 237 239
-239 26 149 238 240
-240 27 150 239 241
-241 242 28 151 240
-242 243 29 152 241
-243 242 244 30 153
-244 154 243 245 31
-245 155 244 246 32
-246 33 156 245 247
-247 34 157 246 248
-248 35 158 247 249
-249 36 159 248 250
-250 37 160 249 251
-251 38 161 250 252
-252 253 39 162 251
-253 254 40 163 252
-254 253 255 41 164
-255 165 254 256 42
-256 166 255 257 43
-257 44 167 256 258
-258 45 168 257 259
-259 46 169 258 260
-260 47 170 259 261
-261 48 171 260 262
-262 49 172 261 263
-263 264 50 173 262
-264 265 51 174 263
-265 264 266 52 175
-266 176 265 267 53
-267 177 266 268 54
-268 55 178 267 269
-269 56 179 268 270
-270 57 180 181 269
0