[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 270, 8 ]. See Glossary for some
detail.
PS( 6, 45; 4) = PS( 6, 45; 11) = PS( 6, 90; 11)
= PS( 6, 90; 41) = MSZ ( 30, 9, 11, 2) = MC3( 6, 45, 1, 11, 4, 15, 1)
= UG(ATD[270, 5]) = UG(ATD[270, 6]) = MG(Cmap(270, 13) { 18, 30| 6}_ 90)
= MG(Cmap(270, 14) { 18, 30| 6}_ 90) = HT[270, 3]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | |
|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 | 0 | 0 35 |
| 2 | - | - | - | 1 6 | 14 | 12 |
| 3 | - | - | - | 13 | 0 20 | 41 |
| 4 | 0 | 39 44 | 32 | - | - | - |
| 5 | 0 | 31 | 0 25 | - | - | - |
| 6 | 0 10 | 33 | 4 | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | |
|---|---|---|---|---|---|---|
| 1 | - | 0 1 | - | - | - | 0 34 |
| 2 | 0 44 | - | 22 26 | - | - | - |
| 3 | - | 19 23 | - | 14 43 | - | - |
| 4 | - | - | 2 31 | - | 11 37 | - |
| 5 | - | - | - | 8 34 | - | 23 37 |
| 6 | 0 11 | - | - | - | 8 22 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 10 | - | 0 | - | - | - | - | 0 | - | - | - | - |
| 2 | - | - | - | - | - | - | - | 0 16 | - | 0 | - | - | - | - | 0 |
| 3 | - | - | - | 0 | - | - | - | - | - | - | - | 0 4 | - | 0 | - |
| 4 | 0 8 | - | 0 | - | - | - | - | 1 | - | - | - | - | - | - | - |
| 5 | - | - | - | - | 1 17 | - | 0 | - | - | - | - | 0 | - | - | - |
| 6 | 0 | - | - | - | - | - | - | - | 11 15 | - | 3 | - | - | - | - |
| 7 | - | - | - | - | 0 | - | - | - | - | - | - | - | 9 17 | - | 15 |
| 8 | - | 0 2 | - | 17 | - | - | - | - | 13 | - | - | - | - | - | - |
| 9 | - | - | - | - | - | 3 7 | - | 5 | - | - | - | - | 13 | - | - |
| 10 | - | 0 | - | - | - | - | - | - | - | 5 13 | - | 9 | - | - | - |
| 11 | 0 | - | - | - | - | 15 | - | - | - | - | - | - | - | 1 3 | - |
| 12 | - | - | 0 14 | - | 0 | - | - | - | - | 9 | - | - | - | - | - |
| 13 | - | - | - | - | - | - | 1 9 | - | 5 | - | - | - | - | 3 | - |
| 14 | - | - | 0 | - | - | - | - | - | - | - | 15 17 | - | 15 | - | - |
| 15 | - | 0 | - | - | - | - | 3 | - | - | - | - | - | - | - | 7 11 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | 0 | - | - | 0 | 0 | - | - | 0 | - |
| 2 | - | - | - | - | - | 0 | - | 0 | - | - | - | - | 0 | - | 0 |
| 3 | - | - | - | - | - | - | 0 | - | 0 | - | - | 0 | - | 16 | - |
| 4 | - | - | - | - | - | - | - | 0 | - | 14 | 16 | - | 16 | - | - |
| 5 | - | - | - | - | - | 14 | - | - | 0 | - | - | 16 | - | - | 16 |
| 6 | - | 0 | - | - | 4 | - | - | - | - | - | - | 1 | - | - | 5 |
| 7 | 0 | - | 0 | - | - | - | - | - | - | - | 7 | - | 3 | - | - |
| 8 | - | 0 | - | 0 | - | - | - | - | - | - | - | 11 | - | 5 | - |
| 9 | - | - | 0 | - | 0 | - | - | - | - | - | - | - | 13 | - | 9 |
| 10 | 0 | - | - | 4 | - | - | - | - | - | - | 15 | - | - | 1 | - |
| 11 | 0 | - | - | 2 | - | - | 11 | - | - | 3 | - | - | - | - | - |
| 12 | - | - | 0 | - | 2 | 17 | - | 7 | - | - | - | - | - | - | - |
| 13 | - | 0 | - | 2 | - | - | 15 | - | 5 | - | - | - | - | - | - |
| 14 | 0 | - | 2 | - | - | - | - | 13 | - | 17 | - | - | - | - | - |
| 15 | - | 0 | - | - | 2 | 13 | - | - | 9 | - | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 8 | - | 0 | - | - | 0 |
| 2 | - | 1 29 | - | - | - | 16 | - | - | 26 |
| 3 | - | - | - | 0 | 0 | - | 0 | 0 | - |
| 4 | 0 22 | - | 0 | - | - | 9 | - | - | - |
| 5 | - | - | 0 | - | - | 19 | - | 7 9 | - |
| 6 | 0 | 14 | - | 21 | 11 | - | - | - | - |
| 7 | - | - | 0 | - | - | - | 11 19 | - | 15 |
| 8 | - | - | 0 | - | 21 23 | - | - | - | 5 |
| 9 | 0 | 4 | - | - | - | - | 15 | 25 | - |