[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 270, 11 ]. See Glossary for some
detail.
AMC( 30, 3, [ 0. 1: 2. 2]) = UG(ATD[270, 28]) = UG(ATD[270, 29])
= UG(ATD[270, 30]) = MG(Rmap(270, 5) { 6, 30| 6}_ 30) = DG(Rmap(270, 5) {
6, 30| 6}_ 30)
= MG(Rmap(270, 6) { 6, 30| 6}_ 30) = DG(Rmap(270, 6) { 6, 30| 6}_ 30) =
DG(Rmap(270, 7) { 30, 6| 6}_ 30)
= DG(Rmap(270, 10) { 30, 6| 6}_ 30) = DG(Rmap(135, 3) { 6, 15| 6}_ 30) =
B(AMC( 15, 3, [ 0. 1: 2. 2]))
= BGCG(AMC( 15, 3, [ 0. 1: 2. 2]); K1;3) = AT[270, 13]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | - | 0 | - | - | 0 2 | - |
2 | - | - | 28 | - | 2 | - | - | - | 0 28 |
3 | 0 | 2 | - | 1 | - | 1 | - | - | - |
4 | - | - | 29 | 1 29 | - | - | 29 | - | - |
5 | 0 | 28 | - | - | - | - | - | 29 | 29 |
6 | - | - | 29 | - | - | 1 29 | 3 | - | - |
7 | - | - | - | 1 | - | 27 | - | 1 | 27 |
8 | 0 28 | - | - | - | 1 | - | 29 | - | - |
9 | - | 0 2 | - | - | 1 | - | 3 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
2 | - | - | - | 0 | - | 20 | 0 | - | 10 |
3 | - | - | - | 20 | 10 | - | 10 | 20 | - |
4 | - | 0 | 10 | - | - | - | - | 21 | 1 |
5 | 0 | - | 20 | - | - | - | 21 | - | 21 |
6 | 0 | 10 | - | - | - | - | 1 | 21 | - |
7 | - | 0 | 20 | - | 9 | 29 | - | - | - |
8 | 0 | - | 10 | 9 | - | 9 | - | - | - |
9 | 0 | 20 | - | 29 | 9 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | 0 | - | 0 | - | 0 |
2 | - | - | 0 2 | - | - | 0 | - | 0 | - |
3 | - | 0 28 | - | - | - | 27 | - | 1 | - |
4 | 0 | - | - | - | 1 3 | - | - | 3 | - |
5 | 0 | - | - | 27 29 | - | - | - | 29 | - |
6 | - | 0 | 3 | - | - | - | 29 | - | 3 |
7 | 0 | - | - | - | - | 1 | - | - | 1 3 |
8 | - | 0 | 29 | 27 | 1 | - | - | - | - |
9 | 0 | - | - | - | - | 27 | 27 29 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
2 | - | - | - | 0 | - | 0 | 0 | - | 10 |
3 | - | - | - | 0 | 0 | - | 10 | 20 | - |
4 | - | 0 | 0 | - | - | - | 1 21 | - | - |
5 | 0 | - | 0 | - | - | - | - | 11 21 | - |
6 | 0 | 0 | - | - | - | - | - | - | 1 21 |
7 | - | 0 | 20 | 9 29 | - | - | - | - | - |
8 | 0 | - | 10 | - | 9 19 | - | - | - | - |
9 | 0 | 20 | - | - | - | 9 29 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | - | 0 | - | 0 | - |
2 | - | 1 29 | - | - | - | - | 0 | 2 | - |
3 | 0 | - | - | 3 | 1 | - | 3 | - | - |
4 | 0 | - | 27 | 1 29 | - | - | - | - | - |
5 | - | - | 29 | - | - | 27 | 29 | - | 29 |
6 | 0 | - | - | - | 3 | - | - | 3 | 29 |
7 | - | 0 | 27 | - | 1 | - | - | 29 | - |
8 | 0 | 28 | - | - | - | 27 | 1 | - | - |
9 | - | - | - | - | 1 | 1 | - | - | 1 29 |