[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 270, 12 ] =
UG(ATD[270,1]).
(I) Following is a form readable by MAGMA:
g:=Graph<270|{ {29, 31}, {105, 107}, {137, 139}, {144, 146}, {156, 158}, {248,
251}, {56, 60}, {186, 190}, {185, 189}, {88, 92}, {1, 4}, {264, 269}, {90, 95},
{50, 55}, {49, 52}, {113, 116}, {1, 7}, {201, 207}, {195, 197}, {16, 22}, {65,
70}, {176, 183}, {86, 94}, {258, 266}, {130, 138}, {4, 13}, {112, 122}, {1, 10},
{225, 234}, {85, 91}, {145, 159}, {53, 58}, {10, 26}, {206, 222}, {1, 16}, {198,
215}, {68, 85}, {13, 28}, {4, 22}, {77, 95}, {64, 82}, {165, 183}, {110, 125},
{239, 252}, {237, 254}, {7, 19}, {44, 56}, {102, 115}, {231, 242}, {105, 127},
{97, 118}, {197, 210}, {106, 125}, {74, 82}, {201, 209}, {143, 150}, {231, 254},
{4, 31}, {162, 185}, {192, 220}, {195, 223}, {11, 22}, {100, 121}, {131, 158},
{174, 179}, {7, 25}, {236, 242}, {41, 55}, {14, 16}, {138, 148}, {228, 251},
{234, 245}, {135, 167}, {201, 233}, {91, 122}, {156, 190}, {222, 252}, {218,
248}, {130, 161}, {25, 61}, {209, 245}, {88, 124}, {85, 113}, {7, 34}, {193,
228}, {13, 43}, {212, 242}, {71, 97}, {128, 166}, {5, 34}, {140, 171}, {10, 34},
{28, 52}, {149, 189}, {68, 109}, {153, 179}, {216, 242}, {212, 254}, {26, 49},
{92, 119}, {94, 115}, {19, 61}, {204, 226}, {147, 188}, {197, 234}, {192, 239},
{155, 180}, {212, 228}, {77, 124}, {158, 175}, {74, 121}, {138, 185}, {152,
171}, {31, 43}, {204, 248}, {16, 37}, {218, 239}, {91, 110}, {74, 127}, {25,
47}, {215, 225}, {195, 245}, {70, 112}, {65, 119}, {13, 58}, {79, 119}, {89,
97}, {134, 190}, {153, 160}, {222, 231}, {135, 189}, {19, 40}, {80, 107}, {23,
43}, {150, 170}, {10, 55}, {90, 103}, {19, 46}, {144, 173}, {68, 122}, {80,
110}, {143, 177}, {2, 61}, {64, 127}, {130, 189}, {37, 103}, {40, 106}, {33,
98}, {152, 219}, {155, 216}, {159, 220}, {174, 237}, {28, 88}, {46, 106}, {132,
193}, {179, 246}, {32, 102}, {141, 203}, {146, 213}, {22, 94}, {52, 124}, {49,
121}, {63, 118}, {182, 255}, {20, 94}, {135, 205}, {168, 226}, {188, 240}, {170,
228}, {59, 116}, {137, 198}, {28, 76}, {61, 109}, {54, 100}, {26, 73}, {162,
241}, {129, 213}, {137, 221}, {162, 246}, {134, 211}, {38, 112}, {186, 236},
{180, 226}, {129, 215}, {141, 219}, {132, 211}, {153, 206}, {168, 255}, {147,
203}, {152, 192}, {177, 233}, {47, 118}, {170, 243}, {46, 116}, {149, 207},
{188, 225}, {11, 85}, {14, 80}, {165, 251}, {31, 64}, {49, 110}, {168, 247},
{44, 76}, {141, 237}, {166, 198}, {18, 115}, {185, 216}, {34, 67}, {8, 106}, {3,
103}, {37, 65}, {152, 252}, {38, 67}, {164, 193}, {174, 203}, {17, 119}, {158,
249}, {182, 222}, {14, 103}, {58, 83}, {165, 204}, {32, 74}, {37, 79}, {129,
234}, {186, 209}, {159, 244}, {177, 218}, {36, 73}, {40, 70}, {144, 254}, {52,
91}, {182, 198}, {171, 223}, {23, 98}, {58, 76}, {137, 255}, {47, 88}, {155,
236}, {11, 115}, {25, 97}, {40, 82}, {149, 233}, {46, 83}, {138, 247}, {26,
100}, {55, 73}, {155, 229}, {132, 251}, {146, 237}, {176, 207}, {14, 142}, {93,
221}, {87, 215}, {53, 181}, {35, 161}, {8, 139}, {90, 217}, {78, 205}, {114,
241}, {66, 199}, {5, 131}, {42, 172}, {17, 150}, {38, 161}, {20, 157}, {54,
191}, {111, 230}, {117, 252}, {29, 151}, {50, 184}, {41, 163}, {30, 148}, {56,
180}, {36, 169}, {86, 219}, {69, 200}, {126, 243}, {81, 223}, {44, 163}, {89,
214}, {84, 219}, {63, 176}, {123, 235}, {126, 238}, {6, 151}, {71, 214}, {41,
184}, {113, 224}, {62, 172}, {9, 154}, {99, 240}, {117, 230}, {35, 183}, {53,
161}, {120, 236}, {111, 250}, {50, 164}, {84, 194}, {75, 220}, {72, 208}, {11,
145}, {33, 187}, {90, 193}, {63, 163}, {101, 249}, {29, 128}, {96, 253}, {78,
208}, {5, 154}, {56, 167}, {23, 136}, {43, 139}, {66, 227}, {108, 206}, {102,
197}, {51, 151}, {2, 167}, {81, 244}, {78, 235}, {75, 238}, {23, 178}, {30,
184}, {60, 154}, {24, 191}, {96, 199}, {62, 153}, {117, 210}, {59, 147}, {81,
249}, {120, 208}, {44, 133}, {93, 244}, {5, 175}, {20, 191}, {99, 200}, {36,
143}, {41, 133}, {21, 187}, {38, 136}, {104, 199}, {29, 172}, {72, 250}, {12,
184}, {69, 240}, {105, 220}, {57, 143}, {123, 205}, {75, 243}, {2, 187}, {125,
196}, {15, 181}, {47, 148}, {117, 206}, {121, 194}, {89, 229}, {20, 169}, {111,
210}, {62, 128}, {107, 213}, {18, 173}, {92, 227}, {84, 235}, {66, 253}, {51,
140}, {3, 194}, {67, 130}, {9, 200}, {118, 183}, {39, 229}, {42, 238}, {68,
128}, {65, 133}, {72, 142}, {120, 190}, {33, 230}, {48, 247}, {27, 211}, {92,
148}, {62, 246}, {79, 134}, {123, 178}, {59, 240}, {102, 173}, {109, 166}, {8,
196}, {93, 145}, {104, 164}, {108, 160}, {24, 213}, {96, 173}, {27, 214}, {51,
253}, {63, 241}, {2, 205}, {82, 157}, {71, 136}, {48, 255}, {39, 232}, {48,
224}, {77, 157}, {57, 233}, {114, 163}, {126, 175}, {104, 186}, {79, 156}, {99,
176}, {101, 177}, {116, 160}, {8, 221}, {18, 196}, {109, 187}, {64, 151}, {15,
214}, {67, 154}, {3, 217}, {45, 246}, {70, 157}, {59, 224}, {45, 241}, {95,
131}, {80, 140}, {57, 229}, {114, 175}, {54, 232}, {60, 226}, {108, 178}, {21,
202}, {73, 150}, {57, 217}, {113, 145}, {127, 159}, {27, 250}, {72, 169}, {111,
142}, {17, 243}, {100, 134}, {87, 181}, {32, 194}, {77, 169}, {54, 211}, {107,
142}, {6, 224}, {83, 181}, {3, 235}, {30, 247}, {98, 139}, {86, 191}, {69, 172},
{35, 202}, {9, 227}, {33, 203}, {76, 167}, {51, 223}, {39, 202}, {89, 180}, {42,
196}, {24, 232}, {45, 221}, {87, 166}, {98, 147}, {125, 140}, {17, 227}, {32,
210}, {122, 136}, {21, 230}, {83, 160}, {36, 208}, {60, 200}, {12, 249}, {71,
178}, {50, 199}, {15, 250}, {112, 133}, {12, 244}, {101, 156}, {6, 253}, {95,
164}, {105, 146}, {18, 238}, {21, 232}, {86, 171}, {39, 217}, {53, 202}, {124,
131}, {6, 262}, {15, 268}, {9, 256}, {12, 259}, {24, 265}, {27, 270}, {30, 259},
{35, 267}, {42, 259}, {45, 256}, {48, 262}, {66, 256}, {78, 267}, {69, 259},
{75, 263}, {81, 261}, {84, 268}, {87, 268}, {93, 256}, {96, 257}, {101, 257},
{108, 265}, {99, 260}, {104, 263}, {123, 265}, {120, 267}, {114, 262}, {126,
262}, {141, 268}, {129, 265}, {135, 270}, {132, 270}, {144, 257}, {149, 270},
{162, 258}, {168, 264}, {174, 269}, {165, 267}, {170, 261}, {182, 260}, {179,
264}, {188, 258}, {201, 269}, {204, 264}, {195, 261}, {192, 263}, {207, 260},
{212, 261}, {209, 263}, {216, 258}, {218, 257}, {231, 260}, {239, 266}, {225,
266}, {248, 266}, {245, 269} }>;
(II) A more general form is to represent the graph as the orbit of {29, 31}
under the group generated by the following permutations:
a: (2, 3)(4, 10)(5, 11)(6, 12)(7, 16)(8, 17)(9, 18)(13, 26)(14, 25)(15, 27)(19,
37)(20, 38)(21, 39)(22, 34)(23, 36)(24, 35)(28, 49)(29, 50)(30, 51)(31, 55)(32,
56)(33, 57)(40, 65)(41, 64)(42, 66)(43, 73)(44, 74)(45, 75)(46, 79)(47, 80)(48,
81)(53, 54)(58, 100)(59, 101)(60, 102)(61, 103)(62, 104)(63, 105)(67, 94)(68,
95)(69, 96)(71, 72)(76, 121)(77, 122)(78, 123)(82, 133)(83, 134)(84, 135)(85,
131)(86, 130)(87, 132)(88, 110)(89, 111)(90, 109)(91, 124)(92, 125)(93, 126)(97,
142)(98, 143)(99, 144)(106, 119)(107, 118)(108, 120)(112, 157)(113, 158)(114,
159)(115, 154)(116, 156)(117, 155)(127, 163)(128, 164)(129, 165)(136, 169)(137,
170)(138, 171)(139, 150)(140, 148)(141, 149)(145, 175)(146, 176)(147, 177)(151,
184)(152, 185)(153, 186)(160, 190)(161, 191)(162, 192)(166, 193)(167, 194)(168,
195)(172, 199)(173, 200)(174, 201)(178, 208)(179, 209)(180, 210)(181, 211)(182,
212)(183, 213)(187, 217)(188, 218)(189, 219)(196, 227)(197, 226)(198, 228)(202,
232)(203, 233)(204, 234)(205, 235)(206, 236)(207, 237)(214, 250)(215, 251)(216,
252)(220, 241)(221, 243)(222, 242)(223, 247)(224, 249)(225, 248)(229, 230)(238,
256)(239, 258)(240, 257)(244, 262)(245, 264)(246, 263)(253, 259)(254, 260)(255,
261)(265, 267)(268, 270) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(4, 167)(5, 166)(6, 168)(7, 61)(8, 63)(9, 62)(10, 187)(11, 189)(12,
188)(13, 76)(14, 78)(15, 77)(16, 205)(17, 206)(18, 207)(19, 25)(20, 27)(21,
26)(22, 135)(23, 133)(24, 134)(28, 58)(29, 60)(30, 59)(31, 56)(32, 57)(33,
55)(34, 109)(35, 110)(36, 111)(37, 123)(38, 122)(39, 121)(40, 97)(41, 98)(42,
99)(43, 44)(46, 47)(49, 202)(50, 203)(51, 204)(52, 53)(64, 180)(65, 178)(66,
179)(67, 68)(70, 71)(73, 230)(74, 229)(75, 231)(79, 265)(80, 267)(81, 266)(82,
89)(83, 88)(84, 90)(85, 130)(86, 132)(87, 131)(91, 161)(92, 160)(93, 162)(94,
270)(95, 268)(96, 269)(100, 232)(101, 234)(102, 233)(103, 235)(104, 237)(105,
236)(106, 118)(107, 120)(108, 119)(112, 136)(113, 138)(114, 137)(115, 149)(116,
148)(117, 150)(124, 181)(125, 183)(126, 182)(127, 155)(128, 154)(129, 156)(139,
163)(140, 165)(141, 164)(142, 208)(143, 210)(144, 209)(145, 185)(146, 186)(147,
184)(151, 226)(152, 228)(153, 227)(157, 214)(158, 215)(159, 216)(169, 250)(170,
252)(171, 251)(172, 200)(173, 201)(174, 199)(175, 198)(176, 196)(177, 197)(190,
213)(191, 211)(192, 212)(193, 219)(194, 217)(195, 218)(220, 242)(221, 241)(222,
243)(223, 248)(224, 247)(225, 249)(238, 260)(239, 261)(240, 259)(244, 258)(245,
257)(246, 256)(253, 264)(254, 263)(255, 262)
c: (1, 4, 13, 28, 52, 91, 122, 112, 70, 40, 19, 7)(2, 5, 14, 29, 53, 92, 121,
113, 71, 41, 20, 8)(3, 6, 15, 30, 54, 93, 123, 114, 72, 42, 21, 9)(10, 22, 43,
76, 124, 110, 68, 38, 65, 82, 46, 25)(11, 23, 44, 77, 125, 109, 67, 37, 64, 83,
47, 26)(12, 24, 45, 78, 126, 111, 69, 39, 66, 84, 48, 27)(16, 31, 58, 88, 49,
85, 136, 133, 157, 106, 61, 34)(17, 32, 59, 89, 50, 86, 137, 135, 158, 107, 62,
35)(18, 33, 60, 90, 51, 87, 138, 134, 159, 108, 63, 36)(55, 94, 139, 167, 131,
80, 128, 161, 119, 74, 116, 97)(56, 95, 140, 166, 130, 79, 127, 160, 118, 73,
115, 98)(57, 96, 141, 168, 132, 81, 129, 162, 120, 75, 117, 99)(100, 145, 178,
163, 169, 196, 187, 154, 103, 151, 181, 148)(101, 146, 179, 165, 170, 197, 188,
155, 104, 152, 182, 149)(102, 147, 180, 164, 171, 198, 189, 156, 105, 153, 183,
150)(142, 172, 202, 227, 194, 224, 214, 184, 191, 221, 205, 175)(143, 173, 203,
226, 193, 223, 215, 185, 190, 220, 206, 176)(144, 174, 204, 228, 195, 225, 216,
186, 192, 222, 207, 177)(199, 219, 255, 270, 249, 213, 246, 267, 243, 210, 240,
229)(200, 217, 253, 268, 247, 211, 244, 265, 241, 208, 238, 230)(201, 218, 254,
269, 248, 212, 245, 266, 242, 209, 239, 231)(232, 256, 235, 262, 250, 259)(233,
257, 237, 264, 251, 261, 234, 258, 236, 263, 252, 260)
C4[ 270, 12 ]
270
-1 4 16 7 10
-2 187 167 61 205
-3 103 235 194 217
-4 22 1 13 31
-5 154 34 131 175
-6 253 224 151 262
-7 1 34 25 19
-8 221 106 139 196
-9 154 200 256 227
-10 55 1 34 26
-11 22 145 115 85
-12 244 259 249 184
-13 58 4 28 43
-14 80 103 16 142
-15 268 181 214 250
-16 22 1 14 37
-17 243 150 227 119
-18 115 238 173 196
-19 46 61 7 40
-20 157 169 191 94
-21 187 232 202 230
-22 11 4 16 94
-23 178 136 43 98
-24 232 265 191 213
-25 47 61 7 97
-26 100 49 73 10
-27 211 214 270 250
-28 88 13 52 76
-29 128 172 151 31
-30 148 247 259 184
-31 4 29 64 43
-32 210 102 194 74
-33 187 203 98 230
-34 67 5 7 10
-35 267 202 161 183
-36 143 169 73 208
-37 79 103 16 65
-38 67 112 136 161
-39 232 202 217 229
-40 70 82 106 19
-41 55 133 184 163
-42 259 172 238 196
-43 23 13 139 31
-44 56 133 163 76
-45 221 256 246 241
-46 83 116 106 19
-47 88 25 148 118
-48 255 224 247 262
-49 110 121 26 52
-50 55 199 184 164
-51 253 223 140 151
-52 91 124 49 28
-53 58 202 181 161
-54 100 232 211 191
-55 50 73 41 10
-56 44 167 180 60
-57 143 233 217 229
-58 13 83 53 76
-59 147 224 116 240
-60 154 56 200 226
-61 2 25 19 109
-62 246 128 172 153
-63 176 118 163 241
-64 82 127 151 31
-65 133 37 70 119
-66 253 199 256 227
-67 154 34 38 130
-68 122 128 85 109
-69 200 259 172 240
-70 112 157 40 65
-71 178 136 214 97
-72 169 250 142 208
-73 55 36 26 150
-74 121 82 127 32
-75 220 243 238 263
-76 44 167 58 28
-77 124 157 169 95
-78 267 235 205 208
-79 134 156 37 119
-80 110 14 107 140
-81 244 223 249 261
-82 157 40 74 64
-83 46 58 181 160
-84 235 268 194 219
-85 11 68 91 113
-86 191 94 171 219
-87 166 268 181 215
-88 47 124 92 28
-89 180 214 97 229
-90 103 193 95 217
-91 110 122 52 85
-92 88 148 227 119
-93 221 145 244 256
-94 22 115 20 86
-95 77 90 131 164
-96 253 199 257 173
-97 89 25 71 118
-98 33 23 147 139
-99 176 200 260 240
-100 121 134 26 54
-101 177 156 257 249
-102 115 173 32 197
-103 90 3 14 37
-104 199 164 186 263
-105 220 146 127 107
-106 46 125 40 8
-107 80 213 105 142
-108 265 178 160 206
-109 187 166 68 61
-110 80 91 125 49
-111 210 250 142 230
-112 122 133 70 38
-113 145 224 116 85
-114 163 262 175 241
-115 11 102 94 18
-116 46 113 59 160
-117 210 206 230 252
-118 47 183 63 97
-119 79 92 17 65
-120 190 267 236 208
-121 100 49 194 74
-122 68 112 91 136
-123 265 178 235 205
-124 77 88 52 131
-125 110 106 140 196
-126 243 238 262 175
-127 159 105 74 64
-128 166 68 29 62
-129 265 234 213 215
-130 67 189 138 161
-131 124 158 5 95
-132 211 193 270 251
-133 44 112 41 65
-134 100 79 211 190
-135 167 189 270 205
-136 23 122 38 71
-137 198 221 255 139
-138 148 247 130 185
-139 137 8 43 98
-140 80 125 171 51
-141 268 203 237 219
-142 111 14 72 107
-143 177 57 36 150
-144 254 146 257 173
-145 11 113 93 159
-146 144 213 105 237
-147 188 59 203 98
-148 47 92 138 30
-149 189 233 270 207
-150 143 170 17 73
-151 6 29 51 64
-152 192 171 219 252
-153 179 160 62 206
-154 67 5 60 9
-155 180 236 216 229
-156 79 101 190 158
-157 77 70 82 20
-158 156 249 131 175
-159 220 145 244 127
-160 83 116 108 153
-161 35 38 53 130
-162 246 258 185 241
-163 44 114 41 63
-164 104 50 193 95
-165 267 204 183 251
-166 198 128 87 109
-167 56 2 135 76
-168 264 255 247 226
-169 77 36 72 20
-170 243 150 228 261
-171 223 140 86 152
-172 69 29 62 42
-173 144 102 18 96
-174 179 203 269 237
-175 114 158 5 126
-176 99 183 63 207
-177 143 101 233 218
-178 23 123 71 108
-179 264 246 174 153
-180 56 89 155 226
-181 15 83 53 87
-182 198 222 255 260
-183 165 176 35 118
-184 12 50 30 41
-185 189 138 216 162
-186 209 190 104 236
-187 33 2 21 109
-188 147 225 258 240
-189 135 149 130 185
-190 134 156 120 186
-191 24 20 86 54
-192 220 239 152 263
-193 132 90 228 164
-194 121 3 84 32
-195 223 245 261 197
-196 125 18 8 42
-197 210 102 234 195
-198 166 137 182 215
-199 66 104 50 96
-200 99 69 60 9
-201 209 233 269 207
-202 35 39 53 21
-203 33 147 141 174
-204 165 264 226 248
-205 78 2 123 135
-206 222 117 108 153
-207 176 201 149 260
-208 78 36 72 120
-209 201 245 186 263
-210 111 117 32 197
-211 132 134 27 54
-212 242 254 228 261
-213 24 146 107 129
-214 89 15 27 71
-215 198 225 129 87
-216 242 155 258 185
-217 57 90 3 39
-218 177 257 248 239
-219 84 86 141 152
-220 159 192 105 75
-221 45 93 137 8
-222 231 182 206 252
-223 81 171 51 195
-224 113 48 59 6
-225 188 266 234 215
-226 168 180 60 204
-227 66 92 17 9
-228 212 170 193 251
-229 89 155 57 39
-230 33 111 117 21
-231 242 254 222 260
-232 24 39 21 54
-233 177 57 201 149
-234 245 225 129 197
-235 78 123 3 84
-236 242 155 120 186
-237 254 146 141 174
-238 126 18 42 75
-239 266 192 218 252
-240 99 188 69 59
-241 45 114 63 162
-242 231 212 236 216
-243 126 170 17 75
-244 12 81 93 159
-245 209 234 269 195
-246 45 179 62 162
-247 168 48 138 30
-248 266 204 218 251
-249 12 101 81 158
-250 111 15 27 72
-251 132 165 248 228
-252 222 117 239 152
-253 66 6 51 96
-254 231 144 212 237
-255 168 48 137 182
-256 66 45 93 9
-257 144 101 96 218
-258 188 266 216 162
-259 12 69 30 42
-260 99 231 182 207
-261 212 81 170 195
-262 48 114 126 6
-263 209 104 192 75
-264 168 179 269 204
-265 24 123 129 108
-266 225 258 248 239
-267 165 78 35 120
-268 15 84 141 87
-269 264 201 245 174
-270 132 135 27 149
0