C4graphGraph forms for C4 [ 270, 14 ] = UG(ATD[270,12])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 270, 14 ] = UG(ATD[270,12]).

(I) Following is a form readable by MAGMA:

g:=Graph<270|{ {150, 151}, {129, 131}, {237, 239}, {44, 47}, {236, 239}, {225, 226}, {96, 99}, {64, 67}, {25, 29}, {105, 109}, {1, 4}, {225, 228}, {64, 69}, {129, 132}, {1, 7}, {210, 212}, {2, 4}, {105, 111}, {26, 29}, {210, 213}, {5, 13}, {258, 266}, {135, 143}, {163, 171}, {1, 8}, {240, 249}, {224, 233}, {98, 107}, {49, 56}, {4, 13}, {3, 10}, {134, 143}, {50, 56}, {260, 270}, {224, 234}, {97, 107}, {86, 92}, {1, 10}, {261, 270}, {258, 265}, {193, 202}, {86, 93}, {197, 201}, {263, 267}, {244, 248}, {118, 123}, {263, 266}, {245, 248}, {197, 200}, {193, 204}, {165, 171}, {118, 121}, {150, 153}, {7, 22}, {13, 28}, {11, 25}, {14, 28}, {10, 25}, {194, 214}, {6, 19}, {7, 17}, {4, 19}, {238, 249}, {8, 31}, {7, 16}, {108, 117}, {170, 179}, {169, 179}, {194, 216}, {237, 246}, {44, 48}, {77, 80}, {235, 246}, {78, 80}, {9, 22}, {224, 255}, {106, 117}, {150, 182}, {223, 255}, {197, 228}, {9, 43}, {208, 242}, {198, 228}, {22, 52}, {19, 49}, {148, 182}, {8, 43}, {209, 242}, {23, 52}, {149, 177}, {13, 40}, {195, 230}, {20, 49}, {148, 177}, {15, 40}, {193, 230}, {192, 231}, {128, 167}, {8, 32}, {12, 37}, {69, 108}, {29, 55}, {195, 233}, {80, 122}, {28, 55}, {194, 233}, {81, 122}, {17, 61}, {69, 107}, {128, 174}, {10, 37}, {17, 62}, {129, 174}, {198, 246}, {220, 236}, {76, 125}, {16, 34}, {222, 236}, {206, 252}, {16, 35}, {207, 252}, {198, 245}, {78, 125}, {149, 161}, {72, 126}, {149, 162}, {2, 58}, {70, 126}, {2, 59}, {67, 122}, {14, 52}, {67, 121}, {14, 53}, {18, 46}, {94, 99}, {16, 46}, {154, 218}, {155, 218}, {57, 123}, {188, 254}, {56, 123}, {189, 254}, {17, 85}, {183, 243}, {23, 83}, {161, 229}, {182, 243}, {161, 231}, {18, 85}, {31, 88}, {41, 97}, {190, 246}, {47, 103}, {44, 100}, {162, 234}, {40, 97}, {46, 103}, {157, 212}, {61, 119}, {190, 244}, {141, 199}, {162, 232}, {24, 83}, {61, 118}, {159, 212}, {135, 203}, {139, 199}, {146, 222}, {23, 90}, {142, 195}, {147, 222}, {23, 89}, {133, 203}, {176, 254}, {43, 100}, {176, 255}, {2, 82}, {184, 232}, {35, 115}, {32, 112}, {137, 217}, {141, 221}, {3, 82}, {184, 233}, {32, 113}, {30, 79}, {24, 73}, {132, 213}, {134, 215}, {45, 127}, {56, 106}, {133, 215}, {21, 70}, {28, 79}, {137, 218}, {141, 222}, {144, 195}, {40, 124}, {43, 127}, {164, 240}, {19, 70}, {25, 76}, {165, 240}, {174, 251}, {42, 124}, {173, 251}, {27, 76}, {35, 116}, {132, 211}, {187, 227}, {187, 226}, {190, 231}, {168, 242}, {180, 238}, {168, 243}, {180, 239}, {55, 106}, {31, 65}, {22, 73}, {31, 64}, {34, 67}, {58, 91}, {156, 253}, {181, 212}, {5, 103}, {156, 255}, {152, 253}, {34, 68}, {58, 92}, {57, 95}, {181, 211}, {57, 94}, {146, 250}, {191, 215}, {169, 192}, {191, 214}, {21, 127}, {151, 253}, {177, 219}, {145, 250}, {171, 192}, {39, 75}, {3, 110}, {37, 72}, {5, 104}, {3, 109}, {39, 73}, {39, 72}, {131, 241}, {130, 241}, {175, 219}, {160, 213}, {162, 213}, {38, 94}, {44, 84}, {140, 244}, {143, 247}, {158, 230}, {33, 88}, {45, 84}, {34, 91}, {142, 247}, {45, 87}, {153, 227}, {37, 94}, {45, 86}, {135, 252}, {144, 235}, {158, 229}, {144, 236}, {135, 250}, {153, 228}, {26, 100}, {26, 101}, {36, 91}, {139, 244}, {59, 187}, {65, 193}, {62, 190}, {54, 183}, {62, 191}, {54, 181}, {65, 194}, {60, 184}, {75, 207}, {53, 176}, {85, 208}, {79, 202}, {74, 207}, {114, 247}, {60, 186}, {59, 188}, {87, 208}, {91, 211}, {63, 180}, {114, 249}, {24, 149}, {63, 178}, {24, 150}, {93, 211}, {110, 225}, {11, 155}, {36, 180}, {117, 229}, {120, 232}, {95, 206}, {95, 205}, {124, 238}, {125, 238}, {5, 145}, {21, 129}, {119, 227}, {30, 139}, {104, 253}, {51, 166}, {29, 139}, {104, 254}, {115, 229}, {6, 145}, {36, 179}, {11, 156}, {98, 250}, {11, 146}, {98, 251}, {84, 205}, {53, 175}, {51, 168}, {81, 202}, {120, 227}, {12, 146}, {50, 172}, {118, 232}, {50, 173}, {82, 205}, {41, 137}, {61, 157}, {58, 154}, {63, 157}, {41, 138}, {72, 235}, {116, 215}, {41, 140}, {42, 140}, {68, 226}, {60, 154}, {69, 226}, {99, 201}, {98, 201}, {46, 130}, {71, 235}, {116, 216}, {6, 182}, {47, 159}, {9, 185}, {105, 217}, {124, 204}, {9, 184}, {47, 158}, {110, 223}, {113, 192}, {48, 130}, {126, 204}, {6, 181}, {36, 151}, {32, 148}, {102, 210}, {49, 133}, {35, 151}, {112, 196}, {115, 199}, {33, 148}, {99, 214}, {112, 197}, {125, 200}, {51, 133}, {126, 200}, {57, 142}, {102, 209}, {97, 214}, {30, 166}, {30, 167}, {55, 142}, {66, 248}, {92, 230}, {66, 249}, {92, 231}, {115, 200}, {119, 204}, {52, 136}, {119, 203}, {54, 136}, {103, 217}, {122, 196}, {123, 196}, {83, 147}, {89, 155}, {88, 155}, {77, 137}, {89, 157}, {77, 136}, {96, 165}, {84, 147}, {96, 167}, {89, 158}, {21, 221}, {101, 173}, {96, 168}, {108, 164}, {20, 221}, {75, 130}, {76, 134}, {68, 143}, {102, 173}, {77, 134}, {109, 161}, {71, 138}, {109, 160}, {113, 188}, {20, 218}, {87, 153}, {113, 191}, {114, 188}, {20, 219}, {87, 152}, {75, 132}, {71, 136}, {108, 163}, {48, 224}, {74, 154}, {48, 225}, {14, 220}, {120, 170}, {15, 220}, {120, 171}, {68, 144}, {101, 177}, {101, 176}, {111, 186}, {74, 156}, {111, 185}, {106, 178}, {111, 183}, {127, 167}, {65, 152}, {90, 131}, {107, 178}, {110, 183}, {66, 152}, {88, 131}, {12, 208}, {12, 210}, {51, 237}, {50, 237}, {63, 223}, {78, 174}, {64, 160}, {62, 223}, {90, 187}, {66, 160}, {78, 172}, {71, 163}, {42, 207}, {70, 163}, {79, 169}, {42, 205}, {90, 189}, {27, 243}, {104, 128}, {105, 128}, {27, 241}, {59, 209}, {74, 166}, {102, 138}, {60, 209}, {114, 159}, {100, 138}, {73, 166}, {112, 159}, {121, 141}, {121, 140}, {54, 206}, {80, 169}, {86, 175}, {85, 175}, {95, 165}, {53, 206}, {15, 242}, {38, 219}, {15, 241}, {82, 172}, {38, 217}, {83, 172}, {18, 258}, {18, 257}, {26, 260}, {27, 260}, {33, 256}, {39, 261}, {33, 258}, {38, 261}, {81, 259}, {81, 261}, {93, 264}, {93, 263}, {116, 262}, {117, 262}, {147, 259}, {145, 259}, {164, 260}, {170, 268}, {164, 259}, {170, 269}, {185, 264}, {178, 256}, {179, 256}, {186, 256}, {189, 263}, {186, 257}, {189, 262}, {185, 262}, {201, 265}, {202, 266}, {203, 266}, {196, 264}, {198, 264}, {199, 265}, {220, 268}, {221, 268}, {216, 268}, {216, 270}, {234, 267}, {234, 265}, {239, 267}, {252, 269}, {247, 257}, {251, 269}, {245, 269}, {248, 257}, {240, 267}, {245, 270} }>;

(II) A more general form is to represent the graph as the orbit of {150, 151} under the group generated by the following permutations:

a: (2, 3)(4, 10)(5, 11)(6, 12)(7, 8)(13, 25)(14, 26)(15, 27)(16, 31)(17, 32)(18, 33)(19, 37)(20, 38)(21, 39)(22, 43)(23, 44)(24, 45)(28, 29)(34, 64)(35, 65)(36, 66)(40, 76)(41, 77)(42, 78)(46, 88)(47, 89)(48, 90)(49, 94)(50, 95)(51, 96)(52, 100)(53, 101)(54, 102)(56, 57)(58, 109)(59, 110)(60, 111)(61, 112)(62, 113)(63, 114)(68, 69)(70, 72)(73, 127)(74, 128)(75, 129)(79, 139)(80, 140)(81, 141)(83, 84)(85, 148)(86, 149)(87, 150)(91, 160)(92, 161)(93, 162)(97, 134)(98, 135)(99, 133)(103, 155)(104, 156)(105, 154)(106, 142)(107, 143)(108, 144)(115, 193)(116, 194)(117, 195)(118, 196)(119, 197)(120, 198)(121, 122)(124, 125)(130, 131)(136, 138)(145, 146)(151, 152)(157, 159)(163, 235)(164, 236)(165, 237)(166, 167)(169, 244)(170, 245)(171, 246)(172, 205)(173, 206)(174, 207)(175, 177)(178, 247)(179, 248)(180, 249)(181, 210)(182, 208)(183, 209)(184, 185)(187, 225)(188, 223)(189, 224)(190, 192)(199, 202)(200, 204)(201, 203)(211, 213)(214, 215)(217, 218)(220, 260)(221, 261)(222, 259)(227, 228)(229, 230)(232, 264)(233, 262)(234, 263)(239, 240)(242, 243)(251, 252)(254, 255)(256, 257)(265, 266)(268, 270)
b: (2, 22)(3, 43)(4, 7)(5, 46)(6, 85)(8, 10)(9, 82)(11, 88)(12, 148)(13, 16)(14, 91)(15, 151)(17, 19)(18, 145)(20, 157)(21, 223)(23, 154)(24, 209)(25, 31)(26, 160)(27, 152)(28, 34)(29, 64)(30, 226)(32, 37)(33, 146)(35, 40)(36, 220)(38, 159)(39, 188)(41, 229)(42, 262)(44, 105)(45, 183)(47, 217)(48, 128)(49, 61)(50, 232)(51, 227)(52, 58)(53, 211)(54, 86)(55, 67)(56, 118)(57, 196)(59, 73)(60, 83)(62, 70)(63, 221)(65, 76)(66, 260)(68, 79)(69, 139)(71, 231)(72, 113)(74, 90)(75, 254)(77, 230)(78, 233)(80, 195)(81, 247)(84, 111)(87, 243)(89, 218)(92, 136)(93, 206)(94, 112)(95, 264)(96, 228)(97, 115)(98, 265)(99, 197)(100, 109)(101, 213)(102, 149)(104, 130)(106, 121)(107, 199)(108, 244)(110, 127)(114, 261)(116, 124)(117, 140)(119, 133)(120, 237)(122, 142)(125, 194)(126, 191)(129, 255)(131, 156)(132, 176)(134, 193)(135, 266)(137, 158)(138, 161)(141, 178)(143, 202)(144, 169)(147, 186)(150, 242)(153, 168)(162, 173)(163, 190)(164, 248)(165, 198)(166, 187)(167, 225)(170, 239)(171, 246)(172, 184)(174, 224)(175, 181)(177, 210)(179, 236)(180, 268)(182, 208)(185, 205)(189, 207)(192, 235)(200, 214)(204, 215)(212, 219)(216, 238)(222, 256)(234, 251)(240, 245)(241, 253)(249, 270)(250, 258)(252, 263)(257, 259)(267, 269)
c: (1, 2, 3)(4, 82, 10)(5, 83, 12)(6, 84, 11)(7, 59, 109)(8, 58, 110)(9, 60, 111)(13, 172, 37)(14, 173, 38)(15, 174, 39)(16, 187, 160)(17, 188, 161)(18, 189, 162)(19, 205, 25)(20, 206, 26)(21, 207, 27)(22, 209, 105)(23, 210, 103)(24, 208, 104)(28, 50, 94)(29, 49, 95)(30, 51, 96)(31, 91, 225)(32, 92, 223)(33, 93, 224)(34, 226, 64)(35, 227, 66)(36, 228, 65)(40, 78, 72)(41, 77, 71)(42, 76, 70)(43, 154, 183)(44, 155, 181)(45, 156, 182)(46, 90, 213)(47, 89, 212)(48, 88, 211)(52, 102, 217)(53, 101, 219)(54, 100, 218)(55, 56, 57)(61, 114, 229)(62, 113, 231)(63, 112, 230)(67, 68, 69)(73, 242, 128)(74, 243, 127)(75, 241, 129)(79, 237, 99)(80, 235, 97)(81, 236, 98)(85, 254, 149)(86, 255, 148)(87, 253, 150)(106, 123, 142)(107, 122, 144)(108, 121, 143)(115, 119, 249)(116, 120, 248)(117, 118, 247)(124, 125, 126)(130, 131, 132)(133, 165, 139)(134, 163, 140)(135, 164, 141)(136, 138, 137)(145, 147, 146)(151, 153, 152)(157, 159, 158)(166, 168, 167)(169, 246, 214)(170, 245, 216)(171, 244, 215)(175, 176, 177)(178, 196, 195)(179, 198, 194)(180, 197, 193)(184, 186, 185)(190, 191, 192)(199, 203, 240)(200, 204, 238)(201, 202, 239)(220, 251, 261)(221, 252, 260)(222, 250, 259)(232, 257, 262)(233, 256, 264)(234, 258, 263)(265, 266, 267)(268, 269, 270)
d: (1, 4, 13, 28, 55, 106, 178, 256, 186, 111, 183, 243, 168, 96, 165, 240, 267, 234, 162, 213, 132, 75, 39, 72, 126, 204, 193, 230, 158, 89, 155, 218, 137, 77, 134, 215, 191, 113, 188, 254, 176, 101, 173, 251, 269, 245, 198, 228, 153, 87, 45, 84, 147, 222, 141, 121, 67, 34, 16, 7)(2, 5, 14, 29, 56, 107, 179, 257, 185, 110, 182, 242, 167, 95, 164, 239, 265, 232, 160, 211, 130, 73, 37, 70, 124, 202, 195, 229, 157, 88, 154, 217, 136, 76, 133, 214, 192, 114, 189, 255, 177, 102, 174, 252, 270, 246, 197, 227, 152, 86, 44, 83, 146, 221, 140, 122, 68, 35, 17, 8)(3, 6, 15, 30, 57, 108, 180, 258, 184, 109, 181, 241, 166, 94, 163, 238, 266, 233, 161, 212, 131, 74, 38, 71, 125, 203, 194, 231, 159, 90, 156, 219, 138, 78, 135, 216, 190, 112, 187, 253, 175, 100, 172, 250, 268, 244, 196, 226, 151, 85, 43, 82, 145, 220, 139, 123, 69, 36, 18, 9)(10, 19, 40, 79, 142, 117, 63, 33, 60, 105, 54, 27, 51, 99, 171, 249, 263, 224, 149, 210, 129, 207, 261, 235, 200, 119, 65, 92, 47, 23, 11, 20, 41, 80, 143, 116, 62, 32, 59, 104, 53, 26, 50, 98, 170, 248, 264, 225, 150, 208, 127, 205, 259, 236, 199, 118, 64, 91, 46, 22)(12, 21, 42, 81, 144, 115, 61, 31, 58, 103, 52, 25, 49, 97, 169, 247, 262, 223, 148, 209, 128, 206, 260, 237, 201, 120, 66, 93, 48, 24)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 270, 14 ]
270
-1 4 7 8 10
-2 58 4 59 82
-3 110 82 10 109
-4 1 2 13 19
-5 13 145 103 104
-6 145 181 182 19
-7 22 1 16 17
-8 1 31 32 43
-9 22 184 185 43
-10 1 3 25 37
-11 155 156 25 146
-12 210 146 37 208
-13 4 5 28 40
-14 220 28 52 53
-15 220 242 40 241
-16 34 35 46 7
-17 61 7 62 85
-18 46 257 258 85
-19 4 70 49 6
-20 221 49 218 219
-21 221 70 127 129
-22 7 73 52 9
-23 89 90 83 52
-24 83 149 73 150
-25 11 29 10 76
-26 100 101 29 260
-27 243 260 76 241
-28 55 13 79 14
-29 55 25 26 139
-30 166 79 167 139
-31 88 8 64 65
-32 112 113 148 8
-33 88 256 148 258
-34 67 68 91 16
-35 16 115 116 151
-36 91 179 180 151
-37 12 72 94 10
-38 94 217 261 219
-39 72 73 261 75
-40 13 124 15 97
-41 137 138 140 97
-42 124 205 140 207
-43 100 127 8 9
-44 100 47 48 84
-45 127 84 86 87
-46 103 16 18 130
-47 44 103 158 159
-48 44 224 225 130
-49 56 133 19 20
-50 56 237 172 173
-51 133 166 168 237
-52 22 23 14 136
-53 176 14 206 175
-54 136 181 183 206
-55 28 29 106 142
-56 123 49 50 106
-57 123 94 95 142
-58 154 2 91 92
-59 187 209 188 2
-60 154 209 184 186
-61 157 17 118 119
-62 190 223 191 17
-63 178 157 223 180
-64 67 69 160 31
-65 193 194 31 152
-66 160 248 249 152
-67 121 34 122 64
-68 143 34 144 226
-69 226 107 64 108
-70 126 19 163 21
-71 136 235 138 163
-72 37 235 126 39
-73 22 166 24 39
-74 154 166 156 207
-75 132 39 130 207
-76 134 25 125 27
-77 134 80 136 137
-78 80 125 172 174
-79 169 202 28 30
-80 77 78 122 169
-81 122 202 259 261
-82 2 3 172 205
-83 23 24 147 172
-84 44 45 147 205
-85 17 18 175 208
-86 45 92 93 175
-87 45 152 153 208
-88 33 155 31 131
-89 23 155 157 158
-90 187 23 189 131
-91 34 211 36 58
-92 231 58 86 230
-93 264 211 86 263
-94 99 57 37 38
-95 165 57 205 206
-96 99 165 167 168
-97 214 40 41 107
-98 201 107 250 251
-99 201 214 94 96
-100 44 26 138 43
-101 176 177 26 173
-102 209 210 138 173
-103 46 47 5 217
-104 253 254 5 128
-105 111 128 217 109
-106 55 56 178 117
-107 178 69 97 98
-108 69 117 163 164
-109 3 105 160 161
-110 3 223 225 183
-111 105 183 185 186
-112 159 196 32 197
-113 188 191 192 32
-114 188 159 247 249
-115 199 35 200 229
-116 35 215 216 262
-117 106 108 229 262
-118 121 232 123 61
-119 203 61 204 227
-120 232 170 171 227
-121 67 118 140 141
-122 67 80 81 196
-123 56 57 118 196
-124 204 40 238 42
-125 78 200 238 76
-126 200 70 72 204
-127 45 167 21 43
-128 167 104 105 174
-129 132 174 21 131
-130 46 48 75 241
-131 88 90 129 241
-132 211 213 129 75
-133 49 203 215 51
-134 77 143 215 76
-135 143 203 250 252
-136 77 71 52 54
-137 77 41 217 218
-138 100 102 71 41
-139 199 244 29 30
-140 121 244 41 42
-141 121 199 221 222
-142 55 57 247 195
-143 68 134 135 247
-144 68 235 236 195
-145 5 6 259 250
-146 11 12 222 250
-147 222 83 259 84
-148 33 177 182 32
-149 177 24 161 162
-150 24 182 151 153
-151 253 35 36 150
-152 66 253 65 87
-153 150 227 228 87
-154 58 60 74 218
-155 11 88 89 218
-156 11 253 255 74
-157 89 212 61 63
-158 89 47 229 230
-159 112 47 212 114
-160 66 213 64 109
-161 231 149 229 109
-162 232 234 213 149
-163 70 71 171 108
-164 259 260 108 240
-165 171 95 96 240
-166 51 73 30 74
-167 127 128 30 96
-168 242 243 51 96
-169 79 80 179 192
-170 179 268 269 120
-171 165 192 163 120
-172 78 82 50 83
-173 101 102 50 251
-174 78 128 129 251
-175 85 53 86 219
-176 254 101 255 53
-177 101 148 149 219
-178 256 106 63 107
-179 36 256 169 170
-180 36 238 63 239
-181 211 212 6 54
-182 243 148 6 150
-183 110 111 243 54
-184 232 233 60 9
-185 264 111 9 262
-186 111 256 257 60
-187 90 59 226 227
-188 254 113 59 114
-189 254 90 262 263
-190 231 244 246 62
-191 113 214 215 62
-192 231 113 169 171
-193 202 204 65 230
-194 233 214 216 65
-195 144 233 142 230
-196 264 122 112 123
-197 112 200 201 228
-198 264 245 246 228
-199 265 115 139 141
-200 125 115 126 197
-201 99 265 98 197
-202 79 266 81 193
-203 133 266 135 119
-204 124 126 193 119
-205 82 84 95 42
-206 95 53 54 252
-207 74 42 75 252
-208 242 12 85 87
-209 242 102 59 60
-210 12 102 212 213
-211 132 91 93 181
-212 210 157 159 181
-213 132 210 160 162
-214 99 191 194 97
-215 133 134 191 116
-216 268 116 270 194
-217 103 38 137 105
-218 154 155 137 20
-219 177 38 20 175
-220 14 15 268 236
-221 268 20 141 21
-222 146 147 236 141
-223 110 255 62 63
-224 233 255 234 48
-225 110 48 226 228
-226 187 68 69 225
-227 187 119 120 153
-228 198 225 153 197
-229 158 115 117 161
-230 92 158 193 195
-231 190 92 192 161
-232 118 162 184 120
-233 224 194 184 195
-234 265 267 224 162
-235 144 246 71 72
-236 220 144 222 239
-237 246 50 51 239
-238 124 125 180 249
-239 267 180 236 237
-240 165 267 249 164
-241 15 27 130 131
-242 209 168 15 208
-243 168 27 182 183
-244 190 248 139 140
-245 198 269 248 270
-246 198 190 235 237
-247 143 114 257 142
-248 66 244 245 257
-249 66 114 238 240
-250 145 135 146 98
-251 269 173 174 98
-252 135 269 206 207
-253 156 104 151 152
-254 176 188 189 104
-255 176 156 223 224
-256 33 178 179 186
-257 247 248 18 186
-258 33 265 266 18
-259 145 81 147 164
-260 26 27 270 164
-261 81 38 39 270
-262 189 116 117 185
-263 189 266 267 93
-264 198 93 185 196
-265 199 201 234 258
-266 202 203 258 263
-267 234 239 240 263
-268 220 221 170 216
-269 245 170 251 252
-270 245 216 260 261
0

**************