C4graphGraph forms for C4 [ 270, 16 ] = UG(ATD[270,15])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 270, 16 ] = UG(ATD[270,15]).

(I) Following is a form readable by MAGMA:

g:=Graph<270|{ {29, 31}, {240, 242}, {117, 119}, {128, 130}, {76, 79}, {204, 207}, {16, 20}, {1, 4}, {264, 269}, {186, 191}, {73, 76}, {121, 124}, {122, 127}, {1, 7}, {192, 199}, {258, 266}, {4, 13}, {67, 74}, {149, 156}, {16, 26}, {1, 10}, {70, 77}, {118, 125}, {37, 41}, {225, 237}, {55, 58}, {86, 91}, {102, 104}, {179, 189}, {53, 58}, {37, 53}, {1, 16}, {204, 221}, {174, 191}, {4, 22}, {234, 248}, {13, 31}, {104, 122}, {237, 254}, {7, 19}, {239, 251}, {228, 240}, {102, 115}, {231, 242}, {10, 28}, {37, 50}, {69, 82}, {128, 152}, {198, 223}, {236, 245}, {67, 89}, {70, 92}, {67, 95}, {161, 189}, {164, 185}, {192, 221}, {171, 182}, {7, 25}, {137, 169}, {10, 43}, {218, 251}, {86, 119}, {149, 180}, {155, 186}, {7, 37}, {218, 248}, {215, 245}, {22, 52}, {19, 49}, {13, 46}, {221, 254}, {129, 162}, {31, 58}, {215, 242}, {204, 233}, {153, 188}, {4, 34}, {23, 49}, {139, 173}, {150, 176}, {210, 245}, {11, 34}, {8, 34}, {28, 55}, {204, 231}, {201, 226}, {17, 61}, {192, 236}, {92, 112}, {73, 100}, {69, 107}, {213, 251}, {133, 170}, {76, 124}, {212, 228}, {209, 225}, {153, 169}, {150, 165}, {159, 172}, {79, 122}, {129, 180}, {25, 47}, {139, 189}, {10, 61}, {201, 254}, {5, 61}, {14, 55}, {64, 121}, {19, 40}, {194, 249}, {89, 98}, {74, 118}, {78, 115}, {145, 172}, {95, 97}, {198, 248}, {133, 186}, {32, 97}, {44, 109}, {168, 233}, {2, 64}, {26, 88}, {20, 86}, {60, 127}, {135, 196}, {144, 211}, {35, 103}, {152, 222}, {185, 255}, {158, 216}, {165, 237}, {28, 85}, {141, 199}, {25, 82}, {50, 121}, {47, 100}, {142, 197}, {35, 111}, {62, 114}, {38, 106}, {13, 64}, {147, 222}, {155, 213}, {159, 209}, {161, 239}, {36, 107}, {188, 243}, {53, 122}, {11, 91}, {49, 97}, {135, 214}, {174, 255}, {138, 219}, {144, 193}, {34, 112}, {171, 249}, {16, 67}, {26, 73}, {62, 106}, {174, 250}, {141, 217}, {19, 70}, {61, 104}, {52, 97}, {132, 209}, {177, 231}, {23, 64}, {43, 124}, {153, 206}, {158, 201}, {39, 127}, {188, 228}, {185, 225}, {46, 118}, {22, 79}, {43, 114}, {29, 70}, {180, 239}, {177, 234}, {132, 216}, {147, 206}, {159, 194}, {40, 118}, {183, 233}, {138, 212}, {152, 198}, {171, 244}, {138, 234}, {167, 199}, {5, 100}, {179, 210}, {128, 226}, {132, 230}, {141, 239}, {180, 215}, {182, 213}, {40, 76}, {150, 242}, {58, 95}, {162, 196}, {2, 106}, {152, 240}, {14, 103}, {59, 82}, {26, 115}, {20, 127}, {46, 69}, {135, 236}, {168, 195}, {55, 91}, {183, 218}, {3, 109}, {161, 207}, {29, 114}, {164, 212}, {191, 207}, {22, 103}, {28, 109}, {39, 85}, {25, 106}, {183, 196}, {177, 194}, {40, 91}, {44, 88}, {132, 240}, {158, 234}, {43, 94}, {182, 195}, {155, 236}, {144, 232}, {168, 210}, {31, 100}, {62, 66}, {14, 115}, {129, 252}, {147, 237}, {155, 229}, {165, 219}, {177, 206}, {20, 148}, {59, 187}, {116, 246}, {11, 136}, {96, 227}, {54, 178}, {93, 216}, {56, 190}, {33, 166}, {45, 170}, {87, 223}, {113, 249}, {66, 203}, {126, 244}, {8, 131}, {78, 197}, {17, 156}, {41, 166}, {80, 223}, {18, 130}, {6, 151}, {50, 160}, {9, 154}, {105, 253}, {93, 200}, {123, 238}, {11, 157}, {59, 173}, {3, 148}, {96, 247}, {78, 214}, {38, 189}, {41, 178}, {77, 208}, {92, 193}, {125, 224}, {33, 190}, {68, 219}, {56, 167}, {108, 243}, {87, 246}, {102, 199}, {18, 176}, {68, 230}, {17, 178}, {52, 151}, {105, 202}, {57, 157}, {110, 202}, {5, 160}, {78, 235}, {87, 241}, {90, 252}, {8, 175}, {81, 246}, {80, 247}, {71, 224}, {108, 203}, {123, 220}, {101, 205}, {6, 175}, {83, 250}, {120, 209}, {47, 133}, {63, 149}, {98, 200}, {117, 223}, {8, 163}, {57, 146}, {23, 187}, {84, 249}, {90, 247}, {21, 187}, {41, 134}, {68, 235}, {119, 216}, {29, 173}, {18, 163}, {32, 145}, {39, 149}, {49, 131}, {119, 197}, {56, 140}, {71, 243}, {116, 192}, {47, 154}, {93, 232}, {52, 130}, {75, 253}, {123, 205}, {15, 184}, {84, 227}, {42, 157}, {35, 148}, {99, 212}, {90, 226}, {12, 181}, {53, 140}, {50, 139}, {98, 219}, {102, 220}, {113, 203}, {5, 190}, {9, 178}, {72, 244}, {32, 157}, {75, 246}, {23, 169}, {65, 255}, {46, 145}, {51, 243}, {120, 184}, {79, 142}, {9, 203}, {36, 230}, {27, 217}, {15, 205}, {2, 193}, {96, 163}, {38, 229}, {32, 227}, {48, 244}, {94, 154}, {88, 156}, {71, 131}, {57, 253}, {56, 252}, {21, 208}, {12, 202}, {24, 222}, {14, 200}, {54, 241}, {80, 151}, {27, 211}, {30, 214}, {101, 173}, {51, 250}, {83, 154}, {110, 167}, {42, 224}, {54, 252}, {104, 162}, {126, 181}, {72, 133}, {30, 208}, {2, 205}, {73, 134}, {48, 255}, {99, 172}, {107, 164}, {48, 224}, {95, 143}, {68, 148}, {65, 145}, {51, 227}, {117, 165}, {89, 136}, {120, 169}, {60, 238}, {94, 140}, {85, 134}, {121, 170}, {86, 130}, {88, 140}, {114, 166}, {63, 233}, {81, 134}, {89, 142}, {65, 153}, {83, 139}, {80, 136}, {74, 146}, {71, 159}, {99, 187}, {105, 176}, {110, 183}, {63, 229}, {17, 202}, {57, 226}, {42, 241}, {33, 250}, {24, 197}, {84, 137}, {82, 143}, {113, 175}, {126, 160}, {3, 220}, {101, 186}, {108, 179}, {111, 176}, {66, 160}, {98, 128}, {18, 241}, {63, 220}, {109, 142}, {15, 235}, {81, 181}, {36, 193}, {83, 182}, {60, 217}, {77, 170}, {111, 136}, {117, 146}, {44, 196}, {59, 211}, {107, 131}, {116, 156}, {74, 163}, {36, 206}, {125, 151}, {3, 232}, {94, 181}, {45, 195}, {72, 166}, {65, 175}, {27, 235}, {92, 172}, {84, 164}, {39, 214}, {111, 158}, {85, 167}, {21, 230}, {81, 162}, {124, 143}, {60, 200}, {125, 137}, {44, 217}, {77, 184}, {75, 190}, {103, 146}, {24, 238}, {38, 208}, {30, 232}, {112, 137}, {6, 253}, {72, 179}, {21, 238}, {12, 247}, {35, 222}, {69, 184}, {66, 191}, {62, 195}, {27, 229}, {45, 211}, {112, 143}, {15, 268}, {6, 256}, {9, 259}, {12, 262}, {30, 270}, {24, 265}, {45, 267}, {33, 262}, {42, 262}, {48, 259}, {51, 256}, {54, 256}, {75, 259}, {87, 263}, {93, 268}, {90, 261}, {96, 259}, {105, 257}, {108, 260}, {110, 263}, {101, 270}, {99, 268}, {123, 267}, {116, 261}, {120, 265}, {113, 262}, {126, 256}, {129, 257}, {138, 265}, {141, 270}, {135, 267}, {150, 261}, {144, 265}, {147, 268}, {168, 270}, {174, 264}, {171, 258}, {161, 267}, {185, 260}, {188, 258}, {198, 257}, {194, 264}, {207, 258}, {201, 263}, {215, 263}, {213, 260}, {210, 264}, {221, 257}, {218, 261}, {231, 260}, {228, 269}, {225, 266}, {248, 266}, {254, 269}, {251, 269}, {245, 266} }>;

(II) A more general form is to represent the graph as the orbit of {29, 31} under the group generated by the following permutations:

a: (1, 2, 3)(4, 193, 148)(5, 195, 149)(6, 194, 150)(7, 205, 109)(8, 206, 111)(9, 207, 110)(10, 106, 220)(11, 107, 222)(12, 108, 221)(13, 144, 20)(14, 143, 21)(15, 142, 19)(16, 64, 232)(17, 66, 233)(18, 65, 234)(22, 92, 68)(23, 93, 67)(24, 91, 69)(25, 123, 28)(26, 121, 30)(27, 122, 29)(31, 211, 127)(32, 212, 128)(33, 213, 129)(34, 36, 35)(37, 101, 44)(38, 102, 43)(39, 100, 45)(40, 184, 197)(41, 186, 196)(42, 185, 198)(46, 265, 86)(47, 267, 85)(48, 266, 87)(49, 268, 89)(50, 270, 88)(51, 269, 90)(52, 172, 219)(53, 173, 217)(54, 174, 218)(55, 82, 238)(56, 83, 239)(57, 84, 240)(58, 59, 60)(61, 62, 63)(70, 235, 79)(71, 237, 80)(72, 236, 81)(73, 170, 214)(74, 169, 216)(75, 171, 215)(76, 77, 78)(94, 189, 199)(95, 187, 200)(96, 188, 201)(97, 99, 98)(103, 112, 230)(104, 114, 229)(105, 113, 231)(115, 124, 208)(116, 126, 210)(117, 125, 209)(118, 120, 119)(130, 145, 138)(131, 147, 136)(132, 146, 137)(133, 135, 134)(139, 141, 140)(151, 159, 165)(152, 157, 164)(153, 158, 163)(154, 161, 167)(155, 162, 166)(156, 160, 168)(175, 177, 176)(178, 191, 183)(179, 192, 181)(180, 190, 182)(202, 203, 204)(223, 224, 225)(226, 227, 228)(241, 255, 248)(242, 253, 249)(243, 254, 247)(244, 245, 246)(250, 251, 252)(256, 264, 261)(257, 262, 260)(258, 263, 259)
b: (2, 3)(4, 10)(5, 11)(6, 12)(7, 16)(8, 17)(9, 18)(13, 28)(14, 29)(15, 30)(19, 26)(20, 25)(21, 27)(22, 43)(23, 44)(24, 45)(31, 55)(32, 56)(33, 57)(34, 61)(35, 62)(36, 63)(37, 67)(38, 68)(39, 69)(40, 73)(41, 74)(42, 75)(46, 85)(47, 86)(48, 87)(49, 88)(50, 89)(51, 90)(52, 94)(53, 95)(54, 96)(59, 60)(64, 109)(65, 110)(66, 111)(70, 115)(71, 116)(72, 117)(77, 78)(79, 124)(80, 126)(81, 125)(82, 127)(83, 128)(84, 129)(91, 100)(92, 102)(93, 101)(97, 140)(98, 139)(99, 141)(103, 114)(104, 112)(105, 113)(106, 148)(107, 149)(108, 150)(118, 134)(119, 133)(120, 135)(121, 142)(122, 143)(123, 144)(130, 154)(131, 156)(132, 155)(136, 160)(137, 162)(138, 161)(145, 167)(146, 166)(147, 168)(151, 181)(152, 182)(153, 183)(157, 190)(158, 191)(159, 192)(163, 178)(164, 180)(165, 179)(169, 196)(170, 197)(171, 198)(172, 199)(173, 200)(174, 201)(175, 202)(176, 203)(177, 204)(184, 214)(185, 215)(186, 216)(187, 217)(188, 218)(189, 219)(193, 220)(194, 221)(195, 222)(205, 232)(206, 233)(207, 234)(208, 235)(209, 236)(210, 237)(211, 238)(212, 239)(213, 240)(223, 244)(224, 246)(225, 245)(226, 250)(227, 252)(228, 251)(229, 230)(241, 259)(242, 260)(243, 261)(247, 256)(248, 258)(249, 257)(253, 262)(254, 264)(255, 263)(265, 267)(268, 270)
c: (2, 178, 3, 163)(4, 7, 10, 16)(5, 127, 11, 82)(6, 208, 12, 235)(8, 106, 17, 148)(9, 220, 18, 193)(13, 37, 28, 67)(14, 97, 29, 140)(15, 256, 30, 247)(19, 43, 26, 22)(20, 34, 25, 61)(21, 262, 27, 253)(23, 166, 44, 146)(24, 224, 45, 246)(31, 53, 55, 95)(32, 173, 56, 200)(33, 217, 57, 187)(35, 131, 62, 156)(36, 203, 63, 176)(38, 202, 68, 175)(39, 136, 69, 160)(40, 124, 73, 79)(41, 109, 74, 64)(42, 211, 75, 238)(46, 50, 85, 89)(47, 104, 86, 112)(48, 267, 87, 265)(49, 114, 88, 103)(51, 270, 90, 268)(52, 70, 94, 115)(54, 232, 96, 205)(59, 190, 60, 157)(65, 189, 110, 219)(66, 149, 111, 107)(71, 195, 116, 222)(72, 196, 117, 169)(77, 181, 78, 151)(80, 184, 126, 214)(81, 197, 125, 170)(83, 199, 128, 172)(84, 186, 129, 216)(91, 143, 100, 122)(92, 154, 102, 130)(93, 227, 101, 252)(98, 145, 139, 167)(99, 250, 141, 226)(105, 230, 113, 229)(108, 233, 150, 206)(118, 121, 134, 142)(119, 137, 133, 162)(120, 244, 135, 223)(123, 241, 144, 259)(132, 249, 155, 257)(138, 255, 161, 263)(147, 243, 168, 261)(152, 159, 182, 192)(153, 179, 183, 165)(158, 164, 191, 180)(171, 236, 198, 209)(174, 239, 201, 212)(177, 260, 204, 242)(185, 207, 215, 234)(188, 210, 218, 237)(194, 213, 221, 240)(225, 258, 245, 248)(228, 264, 251, 254)
d: (1, 4, 22, 79, 76, 40, 91, 55, 58, 95, 67, 16)(2, 6, 24, 81, 77, 42, 93, 56, 59, 96, 68, 17)(3, 5, 23, 80, 78, 41, 92, 57, 60, 94, 69, 18)(7, 34, 103, 122, 124, 118, 86, 28, 31, 97, 89, 26)(8, 35, 104, 121, 125, 119, 85, 29, 32, 98, 88, 25)(9, 36, 105, 123, 126, 120, 87, 30, 33, 99, 90, 27)(10, 13, 52, 142, 73, 19, 11, 14, 53, 143, 74, 20)(12, 15, 54, 144, 75, 21)(37, 112, 146, 127, 43, 46, 130, 109, 100, 49, 136, 115)(38, 113, 147, 129, 45, 48, 132, 110, 101, 51, 138, 116)(39, 114, 145, 128, 44, 47, 131, 111, 102, 50, 137, 117)(61, 64, 151, 197, 134, 70, 157, 200, 140, 82, 163, 148)(62, 65, 152, 196, 133, 71, 158, 199, 139, 84, 165, 149)(63, 66, 153, 198, 135, 72, 159, 201, 141, 83, 164, 150)(106, 175, 222, 162, 170, 224, 216, 167, 173, 227, 219, 156)(107, 176, 220, 160, 169, 223, 214, 166, 172, 226, 217, 154)(108, 177, 221, 161, 171, 225, 215, 168, 174, 228, 218, 155)(178, 193, 253, 238, 181, 184, 241, 232, 190, 187, 247, 235)(179, 194, 254, 239, 182, 185, 242, 233, 191, 188, 248, 236)(180, 195, 255, 240, 183, 186, 243, 234, 192, 189, 249, 237)(202, 205, 256, 265, 246, 208, 262, 268, 252, 211, 259, 230)(203, 206, 257, 267, 244, 209, 263, 270, 250, 212, 261, 229)(204, 207, 258, 266, 245, 210, 264, 269, 251, 213, 260, 231)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 270, 16 ]
270
-1 4 16 7 10
-2 193 106 205 64
-3 220 232 148 109
-4 22 1 34 13
-5 100 190 61 160
-6 253 256 151 175
-7 1 25 37 19
-8 34 163 131 175
-9 154 178 203 259
-10 1 28 61 43
-11 34 91 157 136
-12 202 181 247 262
-13 46 4 31 64
-14 55 200 103 115
-15 235 268 205 184
-16 1 67 26 20
-17 156 178 202 61
-18 176 130 163 241
-19 70 49 7 40
-20 16 148 127 86
-21 187 238 208 230
-22 79 4 103 52
-23 187 169 49 64
-24 265 222 238 197
-25 47 82 7 106
-26 88 16 115 73
-27 211 235 217 229
-28 55 85 10 109
-29 70 114 173 31
-30 232 214 270 208
-31 100 13 58 29
-32 145 157 227 97
-33 166 190 250 262
-34 11 112 4 8
-35 111 222 103 148
-36 193 107 206 230
-37 50 7 41 53
-38 189 106 229 208
-39 214 127 149 85
-40 91 19 118 76
-41 166 134 178 37
-42 157 224 262 241
-43 124 114 94 10
-44 88 217 196 109
-45 211 267 170 195
-46 13 145 69 118
-47 154 100 133 25
-48 244 255 224 259
-49 23 19 97 131
-50 121 37 160 139
-51 243 256 227 250
-52 22 151 97 130
-53 122 58 37 140
-54 178 256 241 252
-55 14 58 91 28
-56 167 190 140 252
-57 253 146 157 226
-58 55 95 31 53
-59 187 211 82 173
-60 200 127 238 217
-61 5 104 17 10
-62 66 114 106 195
-63 220 233 149 229
-64 121 23 2 13
-65 145 255 153 175
-66 191 203 160 62
-67 89 16 95 74
-68 235 148 219 230
-69 46 82 107 184
-70 77 92 29 19
-71 243 224 159 131
-72 133 166 244 179
-73 100 134 26 76
-74 67 146 118 163
-75 253 190 246 259
-76 79 124 40 73
-77 70 170 184 208
-78 235 115 214 197
-79 22 122 76 142
-80 223 136 247 151
-81 134 246 181 162
-82 143 25 69 59
-83 154 182 139 250
-84 137 227 249 164
-85 134 167 28 39
-86 91 20 119 130
-87 223 246 241 263
-88 44 156 26 140
-89 67 136 98 142
-90 247 226 261 252
-91 11 55 40 86
-92 112 70 193 172
-93 232 200 268 216
-94 154 181 140 43
-95 143 67 58 97
-96 247 259 227 163
-97 49 95 52 32
-98 89 200 128 219
-99 187 212 268 172
-100 47 5 73 31
-101 270 205 173 186
-102 220 199 104 115
-103 22 35 14 146
-104 122 102 61 162
-105 176 253 202 257
-106 2 25 38 62
-107 36 69 131 164
-108 243 179 203 260
-109 44 3 28 142
-110 167 202 183 263
-111 176 35 136 158
-112 143 34 92 137
-113 203 249 262 175
-114 166 29 62 43
-115 78 14 102 26
-116 156 246 192 261
-117 165 146 223 119
-118 46 125 40 74
-119 117 216 86 197
-120 209 265 169 184
-121 124 170 50 64
-122 79 104 127 53
-123 220 267 205 238
-124 121 143 43 76
-125 224 137 118 151
-126 244 256 181 160
-127 122 60 39 20
-128 226 130 152 98
-129 180 257 162 252
-130 18 128 52 86
-131 49 71 8 107
-132 209 216 240 230
-133 47 170 72 186
-134 81 73 41 85
-135 267 214 236 196
-136 11 89 111 80
-137 112 125 169 84
-138 265 212 234 219
-139 189 50 83 173
-140 88 56 94 53
-141 199 270 217 239
-142 89 79 109 197
-143 112 124 82 95
-144 232 265 211 193
-145 46 172 32 65
-146 57 103 117 74
-147 222 268 237 206
-148 35 68 3 20
-149 156 180 39 63
-150 165 176 242 261
-151 80 125 6 52
-152 198 222 128 240
-153 188 169 206 65
-154 47 83 94 9
-155 213 236 229 186
-156 88 17 116 149
-157 11 57 42 32
-158 111 201 234 216
-159 209 71 172 194
-160 66 5 126 50
-161 189 267 239 207
-162 81 104 129 196
-163 18 8 74 96
-164 212 84 107 185
-165 237 117 150 219
-166 33 114 72 41
-167 110 56 199 85
-168 210 233 270 195
-169 23 137 120 153
-170 77 121 45 133
-171 244 258 182 249
-172 99 145 92 159
-173 101 59 29 139
-174 264 255 191 250
-175 113 6 8 65
-176 111 105 18 150
-177 231 234 194 206
-178 17 41 9 54
-179 210 189 72 108
-180 149 215 129 239
-181 12 81 126 94
-182 213 83 171 195
-183 110 233 196 218
-184 77 69 15 120
-185 255 225 260 164
-186 133 155 101 191
-187 99 23 59 21
-188 243 258 228 153
-189 179 38 139 161
-190 33 56 5 75
-191 66 174 207 186
-192 199 221 236 116
-193 144 2 36 92
-194 264 177 159 249
-195 45 168 182 62
-196 44 135 183 162
-197 78 24 119 142
-198 223 257 248 152
-199 167 102 192 141
-200 14 60 93 98
-201 254 158 226 263
-202 110 12 17 105
-203 66 113 9 108
-204 231 221 233 207
-205 2 101 123 15
-206 177 36 147 153
-207 191 258 204 161
-208 77 38 30 21
-209 132 159 225 120
-210 264 168 179 245
-211 45 144 59 27
-212 99 138 228 164
-213 155 182 260 251
-214 78 135 39 30
-215 242 245 180 263
-216 132 158 93 119
-217 44 27 60 141
-218 248 183 261 251
-219 165 68 138 98
-220 123 3 102 63
-221 254 257 192 204
-222 24 35 147 152
-223 198 80 117 87
-224 48 125 71 42
-225 209 266 237 185
-226 57 90 201 128
-227 51 84 96 32
-228 188 212 269 240
-229 155 27 38 63
-230 132 68 36 21
-231 242 177 204 260
-232 144 3 93 30
-233 168 204 183 63
-234 177 158 138 248
-235 78 68 15 27
-236 155 135 245 192
-237 165 254 147 225
-238 24 123 60 21
-239 180 161 141 251
-240 132 242 228 152
-241 18 42 54 87
-242 231 215 150 240
-243 188 71 51 108
-244 48 126 72 171
-245 210 266 236 215
-246 81 116 75 87
-247 12 90 80 96
-248 198 266 234 218
-249 113 171 84 194
-250 33 83 51 174
-251 213 269 239 218
-252 56 90 129 54
-253 57 6 105 75
-254 221 201 269 237
-255 48 174 185 65
-256 126 6 51 54
-257 198 221 105 129
-258 188 266 171 207
-259 48 96 9 75
-260 231 213 108 185
-261 90 116 150 218
-262 33 12 113 42
-263 110 201 215 87
-264 210 269 194 174
-265 144 24 138 120
-266 245 225 258 248
-267 45 123 135 161
-268 99 15 147 93
-269 264 254 228 251
-270 101 168 30 141
0

**************