[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 270, 21 ] =
UG(ATD[270,36]).
(I) Following is a form readable by MAGMA:
g:=Graph<270|{ {170, 171}, {1, 3}, {268, 270}, {213, 215}, {105, 107}, {1, 2},
{4, 7}, {2, 6}, {265, 269}, {258, 262}, {83, 87}, {9, 13}, {216, 221}, {2, 4},
{266, 268}, {264, 270}, {16, 22}, {3, 5}, {144, 151}, {186, 189}, {185, 190},
{160, 169}, {260, 269}, {197, 204}, {1, 11}, {263, 269}, {262, 268}, {7, 13},
{6, 12}, {5, 15}, {3, 8}, {5, 9}, {263, 267}, {241, 253}, {240, 252}, {115,
127}, {4, 10}, {1, 14}, {257, 270}, {243, 252}, {229, 234}, {209, 222}, {3, 19},
{45, 61}, {9, 25}, {8, 24}, {110, 126}, {12, 30}, {239, 253}, {201, 219}, {13,
31}, {207, 220}, {14, 26}, {15, 27}, {2, 23}, {234, 255}, {7, 18}, {165, 176},
{10, 28}, {239, 249}, {233, 255}, {193, 215}, {11, 29}, {134, 144}, {6, 17},
{79, 88}, {69, 82}, {43, 60}, {161, 182}, {8, 16}, {133, 156}, {236, 245}, {12,
22}, {228, 254}, {33, 59}, {32, 58}, {132, 158}, {44, 55}, {230, 253}, {195,
216}, {39, 59}, {66, 94}, {110, 114}, {131, 159}, {76, 81}, {10, 20}, {64, 94},
{35, 61}, {34, 60}, {11, 21}, {64, 95}, {207, 208}, {71, 88}, {73, 105}, {223,
255}, {218, 250}, {71, 102}, {201, 232}, {200, 233}, {138, 171}, {4, 38}, {214,
244}, {150, 180}, {19, 48}, {196, 231}, {81, 114}, {155, 184}, {92, 120}, {5,
32}, {22, 51}, {20, 49}, {145, 180}, {147, 182}, {30, 56}, {221, 251}, {199,
225}, {70, 96}, {31, 57}, {13, 42}, {213, 242}, {212, 243}, {21, 50}, {15, 40},
{223, 247}, {14, 39}, {217, 240}, {72, 97}, {133, 172}, {141, 164}, {28, 54},
{203, 225}, {192, 234}, {29, 55}, {73, 98}, {210, 249}, {80, 125}, {216, 245},
{87, 122}, {67, 109}, {68, 107}, {222, 241}, {205, 226}, {192, 239}, {89, 118},
{135, 168}, {153, 182}, {159, 176}, {17, 33}, {194, 242}, {69, 117}, {68, 116},
{67, 115}, {21, 37}, {20, 36}, {19, 35}, {18, 34}, {211, 226}, {94, 108}, {202,
248}, {157, 175}, {65, 114}, {203, 248}, {132, 183}, {24, 44}, {218, 238}, {25,
45}, {154, 175}, {66, 117}, {75, 124}, {6, 62}, {213, 237}, {206, 246}, {75,
115}, {7, 63}, {16, 41}, {212, 237}, {199, 254}, {194, 251}, {23, 43}, {196,
248}, {87, 107}, {139, 183}, {8, 53}, {90, 103}, {18, 47}, {9, 52}, {128, 189},
{130, 191}, {26, 36}, {27, 37}, {17, 46}, {211, 236}, {129, 190}, {38, 102},
{45, 109}, {44, 108}, {43, 107}, {42, 106}, {41, 105}, {40, 104}, {39, 103},
{149, 212}, {179, 242}, {152, 217}, {60, 126}, {61, 127}, {131, 192}, {181,
246}, {150, 213}, {16, 84}, {56, 124}, {142, 202}, {135, 193}, {177, 247}, {158,
216}, {58, 125}, {129, 198}, {148, 211}, {49, 120}, {36, 110}, {50, 120}, {37,
111}, {128, 202}, {136, 194}, {137, 195}, {157, 215}, {174, 228}, {140, 199},
{168, 227}, {55, 123}, {154, 214}, {52, 121}, {54, 123}, {139, 198}, {167, 234},
{62, 112}, {63, 113}, {138, 196}, {140, 194}, {53, 122}, {166, 233}, {189, 237},
{48, 97}, {191, 238}, {59, 106}, {143, 222}, {30, 76}, {31, 77}, {146, 192},
{168, 250}, {22, 69}, {190, 237}, {180, 231}, {142, 221}, {178, 230}, {179,
231}, {135, 210}, {176, 229}, {28, 74}, {29, 75}, {149, 195}, {23, 64}, {188,
235}, {33, 121}, {58, 98}, {47, 119}, {46, 118}, {15, 86}, {57, 96}, {26, 67},
{24, 65}, {152, 193}, {14, 85}, {25, 66}, {51, 111}, {191, 227}, {189, 225},
{164, 248}, {181, 232}, {130, 220}, {190, 224}, {170, 244}, {27, 68}, {187,
228}, {38, 70}, {49, 81}, {148, 244}, {165, 197}, {166, 198}, {167, 199}, {41,
72}, {187, 218}, {134, 231}, {50, 80}, {161, 195}, {30, 125}, {178, 209}, {42,
73}, {170, 206}, {184, 220}, {162, 196}, {169, 207}, {56, 95}, {136, 239}, {48,
88}, {54, 94}, {53, 93}, {52, 92}, {51, 91}, {50, 90}, {49, 89}, {165, 205},
{10, 99}, {12, 101}, {151, 254}, {153, 245}, {154, 246}, {131, 238}, {172, 193},
{32, 78}, {33, 79}, {11, 100}, {40, 71}, {137, 230}, {163, 204}, {173, 221},
{34, 80}, {35, 81}, {162, 208}, {169, 219}, {47, 91}, {57, 76}, {145, 228}, {36,
82}, {37, 83}, {138, 252}, {47, 88}, {54, 78}, {143, 247}, {46, 87}, {160, 217},
{177, 200}, {55, 77}, {175, 212}, {187, 198}, {146, 236}, {186, 197}, {112,
240}, {18, 147}, {99, 226}, {20, 149}, {122, 251}, {17, 146}, {21, 150}, {19,
148}, {117, 253}, {101, 236}, {62, 181}, {113, 252}, {40, 166}, {38, 181}, {46,
186}, {23, 130}, {39, 178}, {28, 137}, {65, 215}, {43, 179}, {45, 180}, {26,
128}, {27, 129}, {24, 131}, {42, 182}, {25, 132}, {61, 160}, {64, 223}, {102,
249}, {60, 159}, {91, 255}, {104, 205}, {106, 207}, {59, 157}, {70, 224}, {63,
152}, {105, 206}, {31, 183}, {100, 204}, {73, 225}, {62, 151}, {116, 222}, {78,
229}, {118, 218}, {119, 219}, {127, 210}, {89, 247}, {120, 214}, {98, 210},
{126, 206}, {96, 209}, {44, 152}, {41, 156}, {86, 227}, {51, 133}, {93, 235},
{103, 208}, {111, 214}, {84, 238}, {108, 208}, {121, 197}, {48, 241}, {85, 148},
{84, 149}, {118, 183}, {123, 186}, {123, 185}, {126, 188}, {77, 136}, {100,
161}, {90, 159}, {121, 188}, {101, 162}, {124, 187}, {108, 164}, {109, 165},
{110, 166}, {111, 167}, {58, 243}, {79, 134}, {57, 242}, {104, 163}, {74, 134},
{104, 164}, {93, 145}, {99, 174}, {106, 167}, {93, 147}, {119, 185}, {74, 133},
{97, 174}, {119, 184}, {96, 176}, {92, 143}, {98, 177}, {89, 141}, {29, 200},
{91, 142}, {72, 158}, {52, 227}, {80, 135}, {65, 153}, {97, 185}, {67, 155},
{66, 154}, {70, 156}, {86, 140}, {83, 137}, {82, 136}, {71, 157}, {63, 226},
{78, 144}, {85, 139}, {84, 138}, {115, 173}, {125, 163}, {68, 155}, {75, 171},
{74, 168}, {79, 171}, {101, 129}, {116, 144}, {117, 145}, {76, 169}, {114, 151},
{69, 163}, {100, 130}, {77, 170}, {34, 202}, {35, 203}, {32, 201}, {56, 209},
{82, 184}, {113, 155}, {102, 141}, {116, 153}, {127, 146}, {99, 140}, {124,
147}, {95, 175}, {109, 156}, {95, 173}, {83, 160}, {90, 174}, {112, 132}, {122,
141}, {72, 177}, {103, 158}, {85, 172}, {86, 173}, {53, 201}, {112, 142}, {113,
143}, {92, 261}, {128, 259}, {139, 257}, {150, 258}, {172, 264}, {161, 260},
{162, 261}, {178, 259}, {191, 266}, {179, 267}, {188, 256}, {203, 266}, {204,
265}, {200, 258}, {205, 262}, {220, 270}, {223, 267}, {211, 267}, {217, 256},
{219, 263}, {235, 264}, {224, 260}, {229, 257}, {224, 261}, {230, 256}, {233,
256}, {232, 258}, {232, 259}, {235, 261}, {243, 257}, {245, 262}, {251, 264},
{254, 265}, {240, 265}, {250, 259}, {244, 269}, {246, 268}, {241, 266}, {249,
260}, {250, 263} }>;
(II) A more general form is to represent the graph as the orbit of {170, 171}
under the group generated by the following permutations:
a: (1, 2)(3, 4)(5, 7)(6, 14)(8, 10)(9, 13)(11, 23)(12, 26)(15, 18)(16, 20)(17,
39)(19, 38)(21, 43)(22, 36)(24, 28)(25, 31)(27, 34)(29, 64)(30, 67)(32, 63)(33,
59)(35, 70)(37, 60)(40, 47)(41, 49)(42, 52)(44, 54)(45, 57)(46, 103)(48,
102)(50, 107)(51, 110)(53, 99)(55, 94)(56, 115)(58, 113)(61, 96)(62, 85)(65,
74)(66, 77)(68, 80)(69, 82)(71, 88)(72, 89)(73, 92)(75, 95)(76, 109)(78,
152)(79, 157)(81, 156)(83, 159)(84, 149)(86, 147)(87, 90)(91, 166)(93, 140)(97,
141)(98, 143)(100, 130)(101, 128)(104, 119)(105, 120)(106, 121)(108, 123)(111,
126)(112, 139)(114, 133)(116, 135)(117, 136)(118, 158)(122, 174)(124, 173)(125,
155)(127, 209)(129, 202)(131, 137)(132, 183)(134, 215)(138, 212)(142, 198)(144,
193)(145, 194)(146, 178)(148, 181)(150, 179)(151, 172)(153, 168)(154, 170)(160,
176)(161, 191)(162, 189)(163, 184)(164, 185)(165, 169)(167, 188)(171, 175)(177,
247)(180, 242)(182, 227)(186, 208)(187, 221)(190, 248)(192, 230)(195, 238)(196,
237)(197, 207)(199, 235)(200, 223)(201, 226)(203, 224)(204, 220)(205, 219)(206,
214)(210, 222)(211, 232)(213, 231)(216, 218)(217, 229)(225, 261)(228, 251)(233,
255)(234, 256)(236, 259)(239, 253)(240, 257)(241, 249)(243, 252)(244, 246)(245,
250)(254, 264)(258, 267)(260, 266)(262, 263)(265, 270)(268, 269) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 3)(4, 5)(6, 8)(7, 9)(10, 15)(11, 14)(12, 16)(17, 24)(18, 25)(19, 23)(20,
27)(21, 26)(28, 40)(29, 39)(30, 41)(31, 42)(32, 38)(33, 44)(34, 45)(35, 43)(36,
37)(46, 65)(47, 66)(48, 64)(49, 68)(50, 67)(51, 69)(52, 63)(53, 62)(54, 71)(55,
59)(56, 72)(57, 73)(58, 70)(60, 61)(74, 104)(75, 103)(76, 105)(77, 106)(78,
102)(79, 108)(80, 109)(81, 107)(82, 111)(83, 110)(84, 101)(85, 100)(86, 99)(87,
114)(88, 94)(89, 116)(90, 115)(91, 117)(92, 113)(93, 112)(95, 97)(96, 98)(118,
153)(119, 154)(120, 155)(121, 152)(122, 151)(123, 157)(124, 158)(125, 156)(126,
160)(127, 159)(128, 150)(129, 149)(130, 148)(131, 146)(132, 147)(133, 163)(134,
164)(135, 165)(136, 167)(137, 166)(138, 162)(139, 161)(141, 144)(142, 145)(168,
205)(169, 206)(170, 207)(171, 208)(172, 204)(173, 174)(175, 185)(176, 210)(177,
209)(178, 200)(179, 203)(180, 202)(181, 201)(182, 183)(184, 214)(186, 215)(187,
216)(188, 217)(189, 213)(190, 212)(191, 211)(193, 197)(194, 199)(195, 198)(218,
245)(219, 246)(220, 244)(221, 228)(222, 247)(223, 241)(224, 243)(225, 242)(226,
227)(229, 249)(230, 233)(231, 248)(234, 239)(235, 240)(236, 238)(250, 262)(251,
254)(252, 261)(253, 255)(257, 260)(258, 259)(263, 268)(264, 265)(266, 267)(269,
270)
c: (3, 14)(5, 26)(7, 10)(8, 39)(9, 36)(12, 17)(13, 20)(15, 67)(16, 59)(18,
28)(19, 85)(21, 29)(22, 33)(24, 103)(25, 110)(27, 115)(30, 46)(31, 49)(32,
128)(34, 54)(35, 139)(37, 75)(40, 109)(41, 157)(42, 149)(43, 64)(44, 90)(45,
166)(47, 74)(48, 172)(50, 55)(51, 79)(52, 82)(53, 178)(56, 87)(57, 89)(58,
189)(60, 94)(61, 198)(63, 99)(65, 158)(66, 126)(68, 173)(69, 121)(70, 102)(71,
156)(72, 215)(73, 212)(76, 118)(77, 120)(78, 202)(80, 123)(81, 183)(83, 124)(84,
106)(86, 155)(88, 133)(91, 134)(92, 136)(93, 230)(95, 107)(96, 141)(97, 193)(98,
237)(101, 146)(104, 165)(105, 175)(108, 159)(111, 171)(112, 151)(113, 140)(114,
132)(116, 221)(117, 188)(119, 168)(122, 209)(125, 186)(127, 129)(131, 208)(135,
185)(137, 147)(138, 167)(142, 144)(143, 194)(145, 256)(150, 200)(152, 174)(153,
216)(154, 206)(160, 187)(162, 192)(163, 197)(164, 176)(169, 218)(170, 214)(177,
213)(179, 223)(180, 233)(182, 195)(184, 227)(190, 210)(191, 220)(196, 234)(199,
252)(201, 259)(203, 257)(207, 238)(217, 228)(219, 250)(222, 251)(224, 249)(225,
243)(229, 248)(231, 255)(235, 253)(239, 261)(240, 254)(241, 264)(242, 247)(266,
270)
C4[ 270, 21 ]
270
-1 11 2 3 14
-2 1 23 4 6
-3 1 5 8 19
-4 2 38 7 10
-5 3 15 9 32
-6 12 2 17 62
-7 13 4 18 63
-8 24 3 16 53
-9 13 25 5 52
-10 99 4 28 20
-11 1 100 29 21
-12 22 101 6 30
-13 7 9 31 42
-14 1 26 39 85
-15 5 27 40 86
-16 22 84 8 41
-17 33 46 146 6
-18 34 47 147 7
-19 35 3 48 148
-20 36 49 149 10
-21 11 37 50 150
-22 12 69 16 51
-23 2 64 130 43
-24 44 8 65 131
-25 66 132 45 9
-26 67 14 36 128
-27 68 15 37 129
-28 137 74 10 54
-29 11 55 200 75
-30 12 56 125 76
-31 77 13 57 183
-32 78 58 201 5
-33 121 79 59 17
-34 80 202 60 18
-35 81 203 61 19
-36 110 26 82 20
-37 111 27 83 21
-38 102 4 70 181
-39 178 14 59 103
-40 166 15 71 104
-41 156 16 72 105
-42 13 182 73 106
-43 23 179 60 107
-44 55 24 108 152
-45 25 180 61 109
-46 17 118 87 186
-47 88 91 18 119
-48 88 19 97 241
-49 89 81 20 120
-50 90 80 21 120
-51 22 111 133 91
-52 121 92 227 9
-53 122 201 93 8
-54 78 123 28 94
-55 44 77 123 29
-56 209 124 95 30
-57 242 96 31 76
-58 243 125 32 98
-59 33 157 39 106
-60 34 126 159 43
-61 45 35 127 160
-62 112 181 6 151
-63 113 226 7 152
-64 23 223 94 95
-65 24 114 215 153
-66 154 25 94 117
-67 155 26 115 109
-68 155 27 116 107
-69 22 82 117 163
-70 156 224 38 96
-71 88 102 157 40
-72 177 158 41 97
-73 225 105 42 98
-74 133 134 168 28
-75 124 115 171 29
-76 57 81 169 30
-77 55 136 170 31
-78 144 229 32 54
-79 33 88 134 171
-80 34 135 125 50
-81 35 114 49 76
-82 36 69 136 184
-83 37 137 160 87
-84 16 138 149 238
-85 14 148 139 172
-86 15 227 140 173
-87 122 46 83 107
-88 79 47 48 71
-89 49 247 118 141
-90 103 159 50 174
-91 255 47 51 142
-92 143 52 261 120
-93 145 147 235 53
-94 66 64 108 54
-95 56 173 64 175
-96 176 209 57 70
-97 48 72 174 185
-98 177 210 58 73
-99 226 140 174 10
-100 11 204 161 130
-101 12 236 129 162
-102 38 71 249 141
-103 90 158 39 208
-104 40 205 163 164
-105 73 41 107 206
-106 167 59 42 207
-107 68 105 43 87
-108 44 94 164 208
-109 165 45 67 156
-110 166 36 114 126
-111 167 37 214 51
-112 132 62 240 142
-113 143 155 63 252
-114 110 81 151 65
-115 67 127 173 75
-116 144 68 222 153
-117 66 253 145 69
-118 89 46 183 218
-119 47 184 185 219
-120 92 49 214 50
-121 33 188 52 197
-122 53 141 251 87
-123 55 185 54 186
-124 187 56 147 75
-125 58 80 30 163
-126 110 188 60 206
-127 210 146 115 61
-128 189 26 202 259
-129 198 101 190 27
-130 220 23 100 191
-131 24 159 192 238
-132 112 25 158 183
-133 156 51 172 74
-134 231 144 79 74
-135 210 80 168 193
-136 77 82 194 239
-137 28 83 195 230
-138 171 84 196 252
-139 198 257 183 85
-140 99 199 194 86
-141 89 122 102 164
-142 221 112 91 202
-143 222 113 92 247
-144 78 134 116 151
-145 180 93 117 228
-146 192 236 17 127
-147 124 93 182 18
-148 211 244 19 85
-149 212 84 195 20
-150 180 213 258 21
-151 144 254 114 62
-152 44 193 63 217
-153 245 116 182 65
-154 66 246 214 175
-155 67 68 113 184
-156 133 70 41 109
-157 59 71 215 175
-158 132 103 72 216
-159 176 90 60 131
-160 169 61 83 217
-161 100 182 260 195
-162 101 261 196 208
-163 69 125 104 204
-164 104 248 108 141
-165 176 205 109 197
-166 110 198 233 40
-167 111 199 234 106
-168 135 227 74 250
-169 160 207 76 219
-170 77 244 171 206
-171 79 170 138 75
-172 264 133 193 85
-173 221 115 95 86
-174 99 90 228 97
-175 154 157 212 95
-176 165 159 96 229
-177 200 247 72 98
-178 209 39 259 230
-179 231 242 267 43
-180 231 45 145 150
-181 232 246 38 62
-182 147 161 42 153
-183 132 139 118 31
-184 220 155 82 119
-185 123 190 97 119
-186 46 123 189 197
-187 198 124 228 218
-188 121 256 235 126
-189 225 237 128 186
-190 224 237 129 185
-191 266 227 238 130
-192 146 234 239 131
-193 135 215 172 152
-194 242 136 140 251
-195 137 149 161 216
-196 231 138 248 162
-197 121 165 204 186
-198 187 166 139 129
-199 254 167 225 140
-200 177 233 258 29
-201 232 53 32 219
-202 34 248 128 142
-203 35 266 225 248
-204 100 265 163 197
-205 165 104 226 262
-206 246 126 170 105
-207 220 169 106 208
-208 103 162 108 207
-209 56 178 222 96
-210 135 127 249 98
-211 267 148 236 226
-212 243 149 237 175
-213 242 215 237 150
-214 154 111 244 120
-215 157 213 193 65
-216 221 245 158 195
-217 256 160 152 240
-218 187 238 118 250
-219 201 169 119 263
-220 270 184 130 207
-221 216 173 251 142
-222 143 209 116 241
-223 255 267 247 64
-224 190 70 260 261
-225 199 189 203 73
-226 99 211 205 63
-227 168 191 52 86
-228 187 254 145 174
-229 176 78 234 257
-230 253 178 256 137
-231 134 179 180 196
-232 201 181 258 259
-233 166 200 255 256
-234 167 255 192 229
-235 264 188 93 261
-236 101 211 146 245
-237 189 190 212 213
-238 191 84 218 131
-239 253 136 192 249
-240 265 112 217 252
-241 253 222 266 48
-242 57 179 213 194
-243 58 212 257 252
-244 170 214 148 269
-245 236 216 262 153
-246 154 268 181 206
-247 143 89 177 223
-248 202 203 196 164
-249 210 102 260 239
-250 168 259 218 263
-251 264 122 221 194
-252 243 113 138 240
-253 117 239 230 241
-254 199 265 151 228
-255 233 91 223 234
-256 188 233 217 230
-257 243 270 139 229
-258 232 200 150 262
-259 232 178 128 250
-260 224 269 161 249
-261 92 224 235 162
-262 245 268 258 205
-263 267 269 250 219
-264 235 270 172 251
-265 254 269 204 240
-266 191 268 203 241
-267 211 179 223 263
-268 266 246 270 262
-269 265 244 260 263
-270 220 264 257 268
0