C4graphGraph forms for C4 [ 270, 23 ] = UG(Rmap(540,261){8,4|10}_15)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 270, 23 ] = UG(Rmap(540,261){8,4|10}_15).

(I) Following is a form readable by MAGMA:

g:=Graph<270|{ {106, 107}, {178, 179}, {1, 3}, {268, 270}, {1, 2}, {1, 5}, {210, 214}, {163, 167}, {2, 7}, {211, 214}, {3, 6}, {2, 4}, {8, 15}, {3, 11}, {20, 28}, {1, 8}, {18, 27}, {7, 14}, {212, 222}, {263, 269}, {6, 13}, {228, 239}, {163, 175}, {4, 9}, {227, 238}, {2, 12}, {178, 188}, {82, 92}, {17, 31}, {16, 30}, {5, 10}, {169, 185}, {232, 248}, {3, 18}, {204, 221}, {41, 56}, {14, 28}, {170, 184}, {37, 55}, {15, 29}, {42, 57}, {171, 184}, {134, 149}, {4, 16}, {5, 17}, {128, 149}, {66, 84}, {230, 254}, {231, 254}, {9, 19}, {37, 63}, {36, 62}, {33, 59}, {32, 58}, {12, 22}, {103, 124}, {234, 241}, {227, 255}, {4, 26}, {35, 61}, {34, 60}, {13, 19}, {11, 21}, {10, 20}, {7, 25}, {6, 24}, {5, 27}, {135, 153}, {8, 23}, {101, 122}, {77, 109}, {221, 253}, {209, 241}, {133, 165}, {7, 38}, {215, 246}, {82, 112}, {213, 247}, {212, 246}, {83, 113}, {6, 37}, {76, 111}, {16, 51}, {136, 172}, {217, 253}, {17, 52}, {75, 110}, {30, 56}, {211, 245}, {210, 244}, {84, 114}, {31, 57}, {141, 171}, {193, 233}, {10, 35}, {95, 118}, {9, 34}, {12, 39}, {12, 33}, {193, 236}, {154, 183}, {157, 179}, {194, 236}, {8, 39}, {206, 225}, {11, 36}, {223, 238}, {18, 32}, {24, 43}, {203, 248}, {76, 127}, {72, 123}, {68, 119}, {64, 115}, {142, 189}, {64, 116}, {65, 117}, {25, 44}, {75, 126}, {73, 124}, {67, 118}, {29, 40}, {27, 46}, {196, 242}, {197, 243}, {26, 45}, {74, 125}, {141, 181}, {205, 245}, {202, 242}, {201, 240}, {89, 99}, {220, 230}, {140, 182}, {70, 125}, {9, 53}, {88, 100}, {26, 38}, {11, 55}, {10, 54}, {135, 187}, {144, 172}, {13, 48}, {71, 122}, {69, 120}, {23, 42}, {21, 40}, {18, 47}, {15, 50}, {130, 191}, {14, 49}, {217, 230}, {70, 121}, {22, 41}, {143, 176}, {129, 192}, {137, 200}, {14, 76}, {15, 77}, {155, 223}, {32, 101}, {34, 103}, {13, 75}, {184, 254}, {177, 247}, {152, 222}, {164, 226}, {33, 102}, {150, 222}, {180, 252}, {148, 221}, {160, 234}, {183, 253}, {35, 104}, {176, 251}, {60, 112}, {63, 115}, {62, 114}, {61, 113}, {36, 105}, {143, 194}, {134, 200}, {152, 215}, {134, 214}, {135, 215}, {136, 216}, {137, 217}, {138, 218}, {139, 219}, {146, 194}, {147, 195}, {20, 69}, {24, 73}, {22, 71}, {138, 219}, {145, 192}, {151, 198}, {142, 220}, {191, 237}, {145, 195}, {147, 193}, {166, 244}, {21, 70}, {25, 74}, {128, 211}, {157, 206}, {173, 249}, {181, 225}, {177, 229}, {128, 213}, {190, 235}, {175, 250}, {174, 251}, {129, 212}, {159, 201}, {182, 224}, {164, 242}, {19, 68}, {187, 236}, {174, 249}, {130, 213}, {26, 66}, {27, 67}, {173, 244}, {180, 239}, {166, 250}, {148, 201}, {170, 247}, {168, 245}, {150, 203}, {161, 252}, {165, 248}, {16, 78}, {186, 228}, {17, 79}, {162, 252}, {23, 72}, {169, 246}, {149, 202}, {188, 220}, {167, 198}, {185, 218}, {48, 85}, {59, 94}, {50, 87}, {38, 64}, {39, 65}, {49, 86}, {133, 226}, {144, 248}, {58, 80}, {175, 197}, {59, 81}, {51, 88}, {55, 92}, {164, 207}, {52, 89}, {189, 208}, {54, 91}, {161, 204}, {163, 206}, {53, 90}, {162, 205}, {155, 235}, {180, 196}, {168, 216}, {190, 207}, {131, 241}, {19, 96}, {132, 240}, {190, 202}, {139, 255}, {158, 235}, {165, 208}, {24, 110}, {189, 203}, {25, 111}, {171, 220}, {38, 95}, {54, 79}, {22, 108}, {39, 93}, {23, 109}, {31, 100}, {53, 78}, {47, 84}, {43, 80}, {37, 94}, {28, 97}, {46, 83}, {44, 81}, {30, 99}, {142, 243}, {20, 106}, {182, 200}, {21, 107}, {29, 98}, {45, 82}, {154, 229}, {101, 229}, {62, 191}, {69, 199}, {114, 240}, {68, 199}, {60, 184}, {61, 185}, {105, 237}, {63, 186}, {69, 192}, {71, 193}, {61, 186}, {112, 247}, {113, 246}, {97, 233}, {29, 148}, {74, 195}, {31, 150}, {101, 236}, {72, 194}, {73, 195}, {30, 149}, {58, 177}, {100, 239}, {102, 237}, {59, 183}, {102, 234}, {108, 224}, {109, 225}, {56, 181}, {111, 226}, {45, 162}, {67, 204}, {66, 205}, {57, 182}, {46, 161}, {127, 238}, {65, 210}, {113, 226}, {28, 134}, {40, 180}, {99, 255}, {122, 231}, {121, 231}, {91, 196}, {41, 136}, {51, 146}, {49, 144}, {47, 142}, {45, 140}, {43, 138}, {91, 250}, {119, 213}, {42, 137}, {90, 249}, {50, 145}, {46, 141}, {116, 215}, {96, 197}, {97, 199}, {44, 139}, {52, 147}, {118, 209}, {42, 131}, {70, 239}, {93, 244}, {117, 223}, {94, 245}, {123, 208}, {120, 212}, {125, 209}, {126, 210}, {41, 132}, {85, 251}, {40, 135}, {89, 233}, {86, 231}, {54, 132}, {90, 232}, {83, 225}, {82, 224}, {55, 133}, {85, 230}, {81, 229}, {94, 234}, {95, 235}, {62, 139}, {92, 233}, {120, 205}, {122, 207}, {53, 131}, {32, 151}, {71, 240}, {121, 206}, {103, 223}, {33, 152}, {74, 243}, {72, 241}, {35, 154}, {34, 153}, {73, 242}, {58, 129}, {119, 204}, {125, 192}, {86, 232}, {36, 155}, {48, 143}, {123, 187}, {108, 174}, {109, 175}, {95, 156}, {104, 172}, {107, 174}, {96, 166}, {97, 167}, {117, 179}, {88, 159}, {106, 173}, {85, 156}, {87, 158}, {98, 168}, {99, 169}, {84, 159}, {86, 157}, {124, 183}, {77, 128}, {79, 130}, {102, 171}, {98, 172}, {100, 170}, {78, 129}, {60, 238}, {118, 160}, {88, 143}, {76, 148}, {56, 227}, {87, 140}, {110, 181}, {57, 228}, {75, 150}, {111, 176}, {80, 178}, {83, 176}, {110, 136}, {127, 151}, {44, 197}, {47, 198}, {116, 157}, {117, 158}, {63, 211}, {87, 185}, {43, 196}, {115, 156}, {106, 154}, {107, 155}, {123, 138}, {103, 147}, {108, 152}, {112, 133}, {124, 137}, {116, 130}, {48, 199}, {93, 165}, {49, 200}, {89, 160}, {51, 202}, {91, 162}, {93, 164}, {96, 153}, {105, 144}, {104, 146}, {50, 201}, {90, 161}, {68, 191}, {64, 187}, {98, 153}, {105, 146}, {77, 177}, {79, 179}, {78, 178}, {65, 188}, {67, 190}, {52, 203}, {66, 189}, {92, 163}, {80, 259}, {81, 260}, {104, 265}, {115, 258}, {119, 261}, {127, 267}, {126, 267}, {126, 263}, {120, 262}, {121, 263}, {114, 269}, {131, 257}, {132, 256}, {140, 264}, {141, 264}, {159, 268}, {158, 266}, {151, 258}, {145, 264}, {156, 256}, {173, 268}, {170, 268}, {169, 270}, {166, 270}, {167, 266}, {160, 270}, {168, 262}, {186, 265}, {188, 265}, {198, 257}, {207, 262}, {218, 266}, {216, 266}, {208, 261}, {222, 267}, {209, 263}, {221, 267}, {219, 269}, {219, 259}, {216, 257}, {217, 256}, {214, 269}, {218, 261}, {227, 258}, {224, 259}, {237, 264}, {228, 258}, {232, 260}, {249, 257}, {254, 262}, {253, 261}, {252, 260}, {251, 259}, {243, 265}, {250, 256}, {255, 260} }>;

(II) A more general form is to represent the graph as the orbit of {106, 107} under the group generated by the following permutations:

a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 13)(10, 15)(12, 18)(14, 21)(16, 24)(17, 23)(20, 29)(22, 32)(25, 36)(26, 37)(27, 39)(28, 40)(30, 43)(31, 42)(33, 47)(34, 48)(35, 50)(38, 55)(41, 58)(44, 62)(45, 63)(46, 65)(49, 70)(51, 73)(52, 72)(53, 75)(54, 77)(56, 80)(59, 84)(60, 85)(61, 87)(64, 92)(66, 94)(67, 93)(68, 96)(69, 98)(71, 101)(74, 105)(76, 107)(78, 110)(79, 109)(81, 114)(82, 115)(83, 117)(86, 121)(88, 124)(89, 123)(90, 126)(91, 128)(95, 133)(97, 135)(99, 138)(100, 137)(102, 142)(103, 143)(104, 145)(106, 148)(108, 151)(111, 155)(112, 156)(113, 158)(116, 163)(118, 165)(119, 166)(120, 168)(125, 144)(127, 174)(129, 136)(130, 175)(131, 150)(132, 177)(134, 180)(140, 186)(141, 188)(146, 195)(147, 194)(149, 196)(152, 198)(153, 199)(154, 201)(157, 206)(159, 183)(160, 208)(161, 210)(162, 211)(164, 190)(167, 215)(169, 218)(170, 217)(171, 220)(172, 192)(173, 221)(176, 223)(178, 181)(179, 225)(182, 228)(184, 230)(187, 233)(189, 234)(191, 197)(193, 236)(200, 239)(202, 242)(203, 241)(204, 244)(205, 245)(209, 248)(212, 216)(213, 250)(214, 252)(219, 255)(222, 257)(224, 258)(226, 235)(227, 259)(229, 240)(232, 263)(237, 243)(238, 251)(246, 266)(247, 256)(249, 267)(253, 268)(260, 269)(261, 270)(264, 265)
b: (1, 2)(3, 4)(5, 7)(6, 9)(8, 12)(10, 14)(11, 16)(13, 19)(15, 22)(17, 25)(18, 26)(20, 28)(21, 30)(23, 33)(24, 34)(27, 38)(29, 41)(31, 44)(32, 45)(35, 49)(36, 51)(37, 53)(40, 56)(42, 59)(43, 60)(46, 64)(47, 66)(48, 68)(50, 71)(52, 74)(54, 76)(55, 78)(57, 81)(58, 82)(61, 86)(62, 88)(63, 90)(65, 93)(67, 95)(69, 97)(70, 99)(72, 102)(73, 103)(75, 96)(77, 108)(79, 111)(80, 112)(83, 116)(85, 119)(87, 122)(89, 125)(91, 127)(92, 129)(94, 131)(98, 136)(100, 139)(101, 140)(104, 144)(105, 146)(106, 134)(107, 149)(109, 152)(110, 153)(113, 157)(114, 159)(115, 161)(117, 164)(120, 167)(121, 169)(123, 171)(126, 166)(128, 174)(130, 176)(132, 148)(133, 178)(135, 181)(137, 183)(138, 184)(141, 187)(142, 189)(143, 191)(145, 193)(147, 195)(150, 197)(151, 162)(154, 200)(155, 202)(156, 204)(158, 207)(160, 209)(163, 212)(165, 188)(168, 216)(170, 219)(173, 214)(175, 222)(177, 224)(179, 226)(180, 227)(182, 229)(185, 231)(186, 232)(190, 235)(192, 233)(194, 237)(196, 238)(198, 205)(201, 240)(203, 243)(206, 246)(208, 220)(210, 244)(211, 249)(213, 251)(215, 225)(217, 253)(218, 254)(221, 256)(223, 242)(228, 260)(230, 261)(234, 241)(236, 264)(239, 255)(245, 257)(247, 259)(248, 265)(250, 267)(252, 258)(262, 266)(263, 270)(268, 269)
c: (3, 5)(4, 7)(6, 10)(9, 14)(11, 17)(13, 20)(15, 23)(16, 25)(18, 27)(19, 28)(21, 31)(22, 33)(24, 35)(26, 38)(29, 42)(30, 44)(32, 46)(34, 49)(36, 52)(37, 54)(40, 57)(41, 59)(43, 61)(45, 64)(47, 67)(48, 69)(50, 72)(51, 74)(53, 76)(55, 79)(56, 81)(58, 83)(60, 86)(62, 89)(63, 91)(65, 93)(66, 95)(68, 97)(70, 100)(71, 102)(73, 104)(75, 106)(77, 109)(78, 111)(80, 113)(82, 116)(84, 118)(85, 120)(87, 123)(88, 125)(90, 127)(92, 130)(94, 132)(96, 134)(98, 137)(99, 139)(101, 141)(103, 144)(105, 147)(107, 150)(108, 152)(110, 154)(112, 157)(114, 160)(115, 162)(117, 165)(119, 167)(121, 170)(122, 171)(124, 172)(126, 173)(128, 175)(129, 176)(131, 148)(133, 179)(135, 182)(136, 183)(138, 185)(140, 187)(142, 190)(143, 192)(145, 194)(146, 195)(149, 197)(151, 161)(153, 200)(155, 203)(156, 205)(158, 208)(159, 209)(163, 213)(164, 188)(166, 214)(168, 217)(169, 219)(174, 222)(177, 225)(178, 226)(180, 228)(181, 229)(184, 231)(186, 196)(189, 235)(191, 233)(193, 237)(198, 204)(201, 241)(202, 243)(206, 247)(207, 220)(210, 244)(211, 250)(212, 251)(215, 224)(216, 253)(221, 257)(223, 248)(227, 260)(230, 262)(232, 238)(234, 240)(236, 264)(242, 265)(245, 256)(246, 259)(249, 267)(252, 258)(261, 266)(263, 268)(269, 270)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 270, 23 ]
270
-1 2 3 5 8
-2 1 12 4 7
-3 11 1 6 18
-4 2 26 16 9
-5 1 27 17 10
-6 13 24 3 37
-7 2 14 25 38
-8 1 23 15 39
-9 34 4 19 53
-10 35 5 20 54
-11 55 3 36 21
-12 22 33 2 39
-13 48 6 19 75
-14 49 28 7 76
-15 77 50 29 8
-16 78 4 51 30
-17 79 5 52 31
-18 3 47 27 32
-19 13 68 96 9
-20 69 28 106 10
-21 11 70 40 107
-22 12 71 41 108
-23 72 8 42 109
-24 110 6 73 43
-25 44 111 7 74
-26 66 45 4 38
-27 67 46 5 18
-28 134 14 20 97
-29 15 148 40 98
-30 99 56 16 149
-31 100 57 17 150
-32 101 58 18 151
-33 12 102 59 152
-34 103 60 9 153
-35 154 104 61 10
-36 11 155 105 62
-37 55 6 94 63
-38 26 7 95 64
-39 12 93 8 65
-40 135 180 29 21
-41 22 132 56 136
-42 23 57 137 131
-43 24 80 138 196
-44 25 81 139 197
-45 26 82 140 162
-46 27 83 161 141
-47 198 18 84 142
-48 143 199 13 85
-49 144 200 14 86
-50 145 201 15 87
-51 88 146 202 16
-52 89 147 203 17
-53 78 90 9 131
-54 132 79 91 10
-55 11 133 37 92
-56 181 227 30 41
-57 182 228 31 42
-58 177 80 129 32
-59 33 81 94 183
-60 34 112 238 184
-61 35 113 185 186
-62 36 114 191 139
-63 211 37 115 186
-64 187 38 115 116
-65 188 210 39 117
-66 189 26 84 205
-67 190 27 204 118
-68 199 191 19 119
-69 199 192 20 120
-70 121 125 239 21
-71 22 122 193 240
-72 23 123 194 241
-73 242 24 124 195
-74 243 25 125 195
-75 110 13 126 150
-76 111 14 148 127
-77 177 15 128 109
-78 178 16 129 53
-79 179 17 130 54
-80 178 58 259 43
-81 44 59 260 229
-82 45 112 92 224
-83 176 46 113 225
-84 66 47 114 159
-85 156 48 251 230
-86 231 232 157 49
-87 158 50 140 185
-88 143 100 159 51
-89 99 233 160 52
-90 232 161 249 53
-91 162 250 196 54
-92 55 233 82 163
-93 165 244 39 164
-94 234 245 37 59
-95 156 235 38 118
-96 166 19 153 197
-97 199 167 233 28
-98 168 29 172 153
-99 89 255 169 30
-100 88 170 239 31
-101 122 236 229 32
-102 33 234 171 237
-103 34 124 223 147
-104 265 35 146 172
-105 144 36 146 237
-106 154 107 173 20
-107 155 106 174 21
-108 22 224 152 174
-109 77 23 225 175
-110 24 136 181 75
-111 176 25 226 76
-112 133 60 82 247
-113 246 61 83 226
-114 269 62 84 240
-115 156 258 63 64
-116 157 215 64 130
-117 179 223 158 65
-118 209 67 160 95
-119 68 213 204 261
-120 69 212 205 262
-121 231 70 206 263
-122 231 101 71 207
-123 187 72 138 208
-124 103 137 73 183
-125 209 70 192 74
-126 210 267 75 263
-127 267 238 151 76
-128 77 211 213 149
-129 78 58 212 192
-130 79 191 213 116
-131 257 42 53 241
-132 256 41 240 54
-133 55 165 112 226
-134 200 214 28 149
-135 187 215 40 153
-136 110 172 216 41
-137 200 124 217 42
-138 123 218 43 219
-139 44 255 62 219
-140 264 45 182 87
-141 264 46 181 171
-142 220 243 189 47
-143 88 176 48 194
-144 49 105 248 172
-145 264 192 50 195
-146 104 105 51 194
-147 103 193 52 195
-148 221 201 29 76
-149 134 202 128 30
-150 222 203 31 75
-151 198 258 127 32
-152 33 222 215 108
-153 34 135 96 98
-154 35 106 183 229
-155 36 223 235 107
-156 256 115 95 85
-157 179 116 206 86
-158 266 235 117 87
-159 88 201 268 84
-160 89 234 270 118
-161 46 90 204 252
-162 45 91 205 252
-163 167 92 206 175
-164 242 93 226 207
-165 133 93 248 208
-166 244 270 96 250
-167 198 266 97 163
-168 245 216 262 98
-169 99 246 270 185
-170 100 268 247 184
-171 220 102 184 141
-172 144 136 104 98
-173 244 268 106 249
-174 249 107 108 251
-175 250 163 109 197
-176 143 111 83 251
-177 77 58 247 229
-178 78 188 80 179
-179 79 178 157 117
-180 40 239 196 252
-181 110 56 225 141
-182 57 200 224 140
-183 154 253 124 59
-184 254 60 170 171
-185 169 61 218 87
-186 265 61 63 228
-187 123 135 236 64
-188 220 265 178 65
-189 66 203 142 208
-190 67 202 235 207
-191 68 237 62 130
-192 145 69 125 129
-193 233 147 71 236
-194 143 146 236 72
-195 145 147 73 74
-196 242 91 180 43
-197 44 243 96 175
-198 167 47 257 151
-199 68 69 48 97
-200 134 49 137 182
-201 148 159 50 240
-202 242 190 149 51
-203 189 248 150 52
-204 67 221 161 119
-205 66 245 162 120
-206 121 157 225 163
-207 122 190 262 164
-208 165 123 189 261
-209 125 118 241 263
-210 244 126 214 65
-211 245 214 128 63
-212 222 246 129 120
-213 247 128 119 130
-214 210 134 211 269
-215 135 246 116 152
-216 266 168 136 257
-217 253 256 137 230
-218 266 138 261 185
-219 269 138 259 139
-220 188 171 142 230
-221 253 267 148 204
-222 212 267 150 152
-223 155 103 117 238
-224 82 182 259 108
-225 181 83 206 109
-226 111 133 113 164
-227 56 255 258 238
-228 57 258 239 186
-229 154 177 101 81
-230 220 254 85 217
-231 121 122 254 86
-232 90 248 260 86
-233 89 92 193 97
-234 102 94 160 241
-235 155 190 158 95
-236 187 101 193 194
-237 264 102 191 105
-238 223 60 127 227
-239 100 70 180 228
-240 132 201 114 71
-241 209 234 72 131
-242 202 73 196 164
-243 265 74 142 197
-244 166 210 93 173
-245 211 168 94 205
-246 113 212 169 215
-247 177 112 213 170
-248 165 144 232 203
-249 90 257 173 174
-250 166 91 256 175
-251 176 259 85 174
-252 180 161 260 162
-253 221 183 217 261
-254 231 184 262 230
-255 99 139 227 260
-256 132 156 217 250
-257 198 216 249 131
-258 115 227 151 228
-259 80 224 251 219
-260 232 255 81 252
-261 253 119 218 208
-262 254 168 207 120
-263 121 209 126 269
-264 145 237 140 141
-265 188 243 104 186
-266 167 158 216 218
-267 221 222 126 127
-268 159 170 270 173
-269 114 214 219 263
-270 166 169 268 160
0

**************