C4graphGraph forms for C4 [ 270, 24 ] = XI(Rmap(135,4){15,6|6}_30)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 270, 24 ] = XI(Rmap(135,4){15,6|6}_30).

(I) Following is a form readable by MAGMA:

g:=Graph<270|{ {131, 239}, {130, 242}, {133, 253}, {129, 248}, {131, 249}, {130, 254}, {134, 251}, {46, 174}, {116, 244}, {112, 240}, {111, 239}, {107, 235}, {102, 230}, {99, 227}, {93, 221}, {60, 188}, {61, 189}, {64, 192}, {70, 198}, {80, 208}, {81, 209}, {12, 141}, {126, 255}, {120, 249}, {114, 243}, {112, 241}, {108, 237}, {104, 233}, {96, 225}, {95, 222}, {94, 223}, {90, 219}, {84, 213}, {51, 178}, {34, 163}, {24, 153}, {59, 186}, {62, 191}, {64, 193}, {69, 196}, {82, 211}, {18, 144}, {121, 251}, {120, 250}, {117, 247}, {116, 246}, {97, 227}, {96, 226}, {32, 162}, {19, 145}, {72, 202}, {73, 203}, {75, 201}, {40, 171}, {125, 254}, {123, 248}, {118, 245}, {113, 242}, {109, 238}, {105, 234}, {85, 214}, {84, 215}, {52, 183}, {44, 175}, {41, 170}, {55, 180}, {58, 185}, {61, 190}, {12, 136}, {127, 251}, {99, 231}, {87, 211}, {65, 197}, {67, 199}, {75, 207}, {16, 149}, {119, 242}, {114, 247}, {104, 237}, {89, 220}, {48, 181}, {43, 174}, {32, 165}, {26, 159}, {24, 157}, {18, 151}, {65, 196}, {73, 204}, {8, 142}, {123, 253}, {122, 252}, {110, 232}, {33, 167}, {9, 143}, {75, 205}, {76, 202}, {11, 140}, {123, 252}, {107, 236}, {99, 228}, {98, 229}, {92, 219}, {83, 212}, {49, 182}, {48, 183}, {25, 158}, {17, 150}, {68, 195}, {74, 205}, {1, 137}, {114, 250}, {100, 236}, {88, 208}, {41, 161}, {40, 160}, {33, 169}, {81, 217}, {1, 136}, {109, 228}, {87, 222}, {49, 184}, {23, 158}, {18, 155}, {4, 141}, {2, 139}, {2, 136}, {118, 252}, {117, 255}, {106, 224}, {39, 173}, {34, 168}, {7, 141}, {6, 140}, {3, 137}, {1, 138}, {127, 244}, {28, 151}, {23, 156}, {4, 143}, {69, 206}, {22, 154}, {124, 240}, {88, 212}, {47, 163}, {64, 204}, {80, 220}, {82, 222}, {1, 140}, {126, 243}, {87, 218}, {85, 216}, {54, 187}, {53, 184}, {38, 171}, {36, 169}, {27, 150}, {21, 152}, {7, 138}, {3, 142}, {77, 192}, {4, 138}, {105, 231}, {104, 230}, {87, 217}, {5, 139}, {56, 182}, {71, 201}, {2, 141}, {110, 225}, {103, 232}, {98, 237}, {97, 238}, {86, 217}, {54, 185}, {42, 165}, {37, 170}, {65, 206}, {76, 195}, {8, 152}, {91, 203}, {55, 167}, {46, 190}, {32, 176}, {12, 156}, {11, 155}, {10, 154}, {9, 153}, {71, 215}, {72, 216}, {81, 193}, {29, 140}, {103, 246}, {74, 219}, {2, 144}, {109, 255}, {108, 254}, {105, 251}, {101, 247}, {5, 151}, {4, 150}, {3, 145}, {7, 148}, {96, 243}, {92, 207}, {39, 180}, {38, 181}, {37, 182}, {9, 157}, {29, 137}, {13, 153}, {76, 216}, {6, 147}, {111, 250}, {97, 244}, {43, 190}, {57, 172}, {69, 208}, {3, 149}, {107, 253}, {106, 252}, {101, 243}, {68, 210}, {72, 222}, {73, 223}, {5, 146}, {127, 232}, {111, 248}, {106, 253}, {102, 241}, {98, 245}, {97, 246}, {90, 205}, {28, 139}, {6, 145}, {58, 173}, {5, 157}, {110, 246}, {7, 159}, {6, 158}, {66, 218}, {69, 220}, {115, 234}, {108, 245}, {104, 241}, {10, 144}, {124, 230}, {109, 247}, {50, 168}, {47, 181}, {19, 137}, {15, 149}, {11, 145}, {71, 221}, {15, 148}, {33, 186}, {66, 217}, {20, 136}, {119, 235}, {54, 170}, {47, 179}, {46, 178}, {45, 177}, {44, 176}, {37, 185}, {75, 215}, {77, 209}, {10, 151}, {114, 239}, {103, 250}, {54, 171}, {38, 187}, {34, 191}, {14, 147}, {79, 210}, {20, 138}, {103, 249}, {102, 248}, {90, 196}, {36, 186}, {68, 218}, {13, 146}, {118, 233}, {96, 255}, {56, 167}, {8, 168}, {85, 245}, {84, 244}, {11, 170}, {95, 254}, {42, 139}, {31, 190}, {56, 153}, {58, 155}, {59, 154}, {68, 229}, {13, 175}, {82, 240}, {31, 189}, {30, 188}, {20, 182}, {15, 173}, {14, 172}, {73, 235}, {10, 169}, {93, 249}, {14, 168}, {51, 149}, {41, 143}, {40, 142}, {22, 176}, {57, 159}, {12, 171}, {19, 180}, {16, 183}, {8, 160}, {119, 223}, {29, 181}, {28, 180}, {21, 189}, {9, 161}, {72, 224}, {74, 226}, {17, 184}, {26, 179}, {24, 177}, {50, 152}, {56, 146}, {57, 147}, {78, 228}, {18, 185}, {25, 178}, {74, 225}, {22, 186}, {101, 201}, {23, 187}, {14, 163}, {95, 242}, {57, 148}, {59, 150}, {71, 234}, {78, 227}, {29, 179}, {115, 221}, {100, 202}, {94, 240}, {30, 176}, {58, 148}, {13, 162}, {94, 241}, {15, 160}, {16, 160}, {101, 213}, {17, 161}, {35, 146}, {83, 226}, {41, 155}, {100, 214}, {94, 236}, {93, 239}, {92, 238}, {91, 233}, {20, 167}, {86, 229}, {16, 164}, {83, 231}, {82, 230}, {40, 156}, {17, 165}, {59, 143}, {80, 228}, {81, 229}, {19, 166}, {25, 172}, {21, 163}, {91, 237}, {26, 173}, {47, 152}, {39, 159}, {98, 218}, {22, 175}, {106, 211}, {83, 234}, {27, 161}, {110, 212}, {93, 231}, {88, 226}, {86, 236}, {42, 144}, {28, 166}, {21, 174}, {100, 223}, {31, 164}, {23, 172}, {30, 162}, {85, 233}, {84, 232}, {27, 166}, {86, 235}, {51, 142}, {35, 157}, {99, 221}, {80, 238}, {92, 227}, {95, 224}, {67, 147}, {30, 203}, {79, 154}, {31, 199}, {70, 156}, {24, 195}, {60, 224}, {61, 225}, {25, 196}, {27, 198}, {67, 158}, {26, 197}, {46, 206}, {66, 162}, {70, 166}, {78, 174}, {39, 198}, {45, 204}, {32, 194}, {43, 201}, {35, 193}, {62, 220}, {35, 192}, {38, 197}, {36, 193}, {44, 202}, {89, 191}, {45, 203}, {79, 169}, {53, 210}, {91, 188}, {88, 191}, {63, 216}, {67, 164}, {42, 194}, {90, 178}, {77, 165}, {33, 200}, {61, 212}, {62, 215}, {63, 214}, {62, 213}, {37, 200}, {66, 175}, {63, 209}, {89, 183}, {52, 219}, {60, 211}, {60, 204}, {55, 198}, {34, 208}, {65, 179}, {49, 194}, {52, 199}, {78, 189}, {36, 209}, {48, 197}, {77, 184}, {53, 195}, {48, 199}, {53, 194}, {49, 200}, {44, 214}, {52, 207}, {64, 188}, {50, 207}, {89, 164}, {51, 206}, {70, 187}, {76, 177}, {43, 213}, {79, 177}, {45, 210}, {50, 205}, {55, 200}, {63, 192}, {102, 258}, {107, 263}, {111, 259}, {108, 256}, {105, 262}, {122, 266}, {124, 268}, {112, 257}, {125, 268}, {121, 264}, {118, 263}, {116, 261}, {113, 256}, {113, 259}, {120, 266}, {113, 258}, {126, 269}, {125, 270}, {122, 265}, {117, 262}, {115, 261}, {115, 260}, {127, 264}, {124, 267}, {119, 256}, {123, 259}, {112, 265}, {120, 257}, {116, 269}, {121, 259}, {126, 260}, {121, 258}, {117, 264}, {125, 256}, {122, 263}, {134, 262}, {132, 262}, {135, 261}, {133, 263}, {129, 258}, {130, 257}, {128, 260}, {129, 261}, {129, 260}, {134, 257}, {130, 266}, {131, 267}, {128, 265}, {135, 270}, {128, 266}, {135, 269}, {132, 270}, {133, 270}, {135, 268}, {132, 264}, {128, 269}, {133, 267}, {131, 268}, {134, 265}, {132, 267} }>;

(II) A more general form is to represent the graph as the orbit of {131, 239} under the group generated by the following permutations:

a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 18)(17, 25)(20, 29)(22, 31)(23, 27)(24, 34)(26, 37)(28, 40)(30, 43)(32, 46)(33, 48)(35, 50)(36, 52)(38, 55)(39, 54)(41, 57)(42, 51)(44, 61)(45, 62)(47, 56)(49, 65)(53, 69)(59, 67)(60, 71)(63, 74)(64, 75)(66, 78)(68, 80)(72, 83)(73, 84)(76, 88)(77, 90)(79, 89)(81, 92)(82, 93)(85, 96)(86, 97)(87, 99)(91, 101)(94, 103)(95, 105)(98, 109)(100, 110)(102, 111)(104, 114)(106, 115)(107, 116)(108, 117)(112, 120)(113, 121)(118, 126)(119, 127)(122, 128)(123, 129)(124, 131)(125, 132)(130, 134)(133, 135)(136, 137)(138, 140)(139, 142)(141, 145)(143, 147)(144, 149)(146, 152)(148, 155)(150, 158)(151, 160)(153, 163)(154, 164)(156, 166)(157, 168)(159, 170)(161, 172)(162, 174)(165, 178)(167, 181)(169, 183)(171, 180)(173, 185)(175, 189)(176, 190)(177, 191)(179, 182)(184, 196)(186, 199)(187, 198)(188, 201)(192, 205)(193, 207)(194, 206)(195, 208)(197, 200)(202, 212)(203, 213)(204, 215)(209, 219)(210, 220)(211, 221)(214, 225)(216, 226)(217, 227)(218, 228)(222, 231)(223, 232)(224, 234)(229, 238)(230, 239)(233, 243)(235, 244)(236, 246)(237, 247)(240, 249)(241, 250)(242, 251)(245, 255)(252, 260)(253, 261)(254, 262)(256, 264)(258, 259)(263, 269)(265, 266)(267, 268)
b: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 24)(17, 26)(19, 28)(21, 30)(23, 33)(25, 36)(27, 39)(29, 42)(31, 45)(32, 47)(34, 44)(35, 51)(37, 54)(38, 49)(40, 56)(41, 58)(43, 60)(46, 64)(48, 53)(50, 66)(52, 68)(55, 70)(57, 59)(61, 73)(62, 72)(63, 69)(65, 77)(67, 79)(71, 82)(74, 86)(75, 87)(76, 89)(78, 91)(80, 85)(81, 90)(83, 94)(84, 95)(88, 100)(92, 98)(93, 102)(96, 107)(97, 108)(99, 104)(101, 106)(103, 113)(105, 112)(109, 118)(110, 119)(114, 123)(115, 124)(116, 125)(117, 122)(120, 121)(126, 133)(127, 130)(128, 132)(129, 131)(137, 139)(138, 141)(140, 144)(142, 146)(143, 148)(145, 151)(147, 154)(149, 157)(150, 159)(152, 162)(153, 160)(156, 167)(158, 169)(161, 173)(163, 176)(164, 177)(165, 179)(166, 180)(168, 175)(170, 185)(171, 182)(172, 186)(174, 188)(178, 193)(181, 194)(183, 195)(184, 197)(187, 200)(189, 203)(190, 204)(191, 202)(192, 206)(196, 209)(199, 210)(201, 211)(205, 217)(207, 218)(208, 214)(212, 223)(213, 224)(215, 222)(216, 220)(219, 229)(221, 230)(225, 235)(226, 236)(227, 237)(228, 233)(231, 241)(232, 242)(234, 240)(238, 245)(239, 248)(243, 253)(244, 254)(246, 256)(247, 252)(249, 258)(250, 259)(251, 257)(255, 263)(260, 267)(261, 268)(262, 265)(264, 266)(269, 270)
c: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(15, 23)(16, 25)(18, 27)(22, 32)(24, 35)(26, 38)(28, 41)(30, 44)(31, 46)(33, 49)(34, 50)(36, 53)(37, 55)(39, 54)(40, 57)(42, 59)(43, 61)(45, 63)(48, 65)(51, 67)(52, 69)(58, 70)(60, 72)(62, 74)(64, 76)(68, 81)(71, 83)(73, 85)(75, 88)(77, 79)(80, 92)(84, 96)(86, 98)(89, 90)(91, 100)(94, 104)(95, 106)(97, 109)(101, 110)(102, 112)(103, 114)(105, 115)(107, 108)(111, 120)(113, 122)(116, 117)(118, 119)(121, 128)(123, 130)(125, 133)(126, 127)(129, 134)(132, 135)(136, 138)(137, 140)(139, 143)(142, 147)(144, 150)(146, 153)(148, 156)(149, 158)(151, 161)(152, 163)(154, 165)(155, 166)(159, 171)(160, 172)(162, 175)(164, 178)(167, 182)(169, 184)(170, 180)(173, 187)(174, 189)(177, 192)(179, 181)(183, 196)(185, 198)(186, 194)(188, 202)(191, 205)(193, 195)(199, 206)(201, 212)(203, 214)(204, 216)(207, 208)(209, 210)(211, 222)(213, 225)(215, 226)(217, 218)(219, 220)(221, 231)(223, 233)(227, 228)(230, 240)(232, 243)(235, 245)(236, 237)(239, 249)(242, 252)(244, 255)(246, 247)(248, 257)(251, 260)(253, 254)(256, 263)(258, 265)(259, 266)(261, 262)(264, 269)(267, 268)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 270, 24 ]
270
-1 136 137 138 140
-2 144 136 139 141
-3 145 137 149 142
-4 143 138 150 141
-5 146 157 139 151
-6 145 147 158 140
-7 148 159 138 141
-8 168 160 152 142
-9 143 157 161 153
-10 154 144 169 151
-11 155 145 170 140
-12 156 136 171 141
-13 146 162 153 175
-14 168 147 172 163
-15 148 149 160 173
-16 149 160 183 164
-17 165 150 161 184
-18 144 155 151 185
-19 166 145 180 137
-20 167 136 138 182
-21 189 152 163 174
-22 154 176 175 186
-23 187 156 158 172
-24 177 157 195 153
-25 178 158 172 196
-26 179 159 173 197
-27 198 166 150 161
-28 166 180 139 151
-29 179 137 181 140
-30 176 188 203 162
-31 199 189 190 164
-32 165 176 194 162
-33 167 200 169 186
-34 168 191 163 208
-35 146 157 192 193
-36 209 169 193 186
-37 200 170 182 185
-38 187 181 171 197
-39 198 180 159 173
-40 156 160 171 142
-41 143 155 170 161
-42 165 144 139 194
-43 190 201 213 174
-44 176 202 214 175
-45 177 210 203 204
-46 178 190 206 174
-47 179 181 152 163
-48 199 181 183 197
-49 200 182 194 184
-50 168 205 152 207
-51 178 149 206 142
-52 199 183 207 219
-53 210 194 184 195
-54 187 170 171 185
-55 198 167 200 180
-56 167 146 182 153
-57 147 148 159 172
-58 155 148 173 185
-59 143 154 150 186
-60 188 211 224 204
-61 189 190 212 225
-62 220 191 213 215
-63 209 192 214 216
-64 188 192 193 204
-65 179 206 196 197
-66 162 217 218 175
-67 199 147 158 164
-68 210 195 218 229
-69 220 206 196 208
-70 187 198 166 156
-71 221 201 234 215
-72 222 202 224 216
-73 223 235 203 204
-74 225 226 205 219
-75 201 215 205 207
-76 177 202 216 195
-77 165 209 192 184
-78 189 227 228 174
-79 154 177 210 169
-80 220 238 228 208
-81 209 193 217 229
-82 211 222 240 230
-83 231 212 234 226
-84 232 244 213 215
-85 233 245 214 216
-86 235 236 217 229
-87 211 222 217 218
-88 212 191 226 208
-89 220 191 183 164
-90 178 205 196 219
-91 188 233 203 237
-92 227 238 207 219
-93 231 221 249 239
-94 223 236 240 241
-95 242 254 222 224
-96 243 255 225 226
-97 244 246 227 238
-98 245 237 218 229
-99 231 221 227 228
-100 223 202 214 236
-101 243 201 213 247
-102 258 248 230 241
-103 232 246 249 250
-104 233 237 230 241
-105 231 234 251 262
-106 253 211 224 252
-107 253 235 236 263
-108 254 245 256 237
-109 255 247 238 228
-110 232 212 246 225
-111 248 259 239 250
-112 265 257 240 241
-113 242 256 258 259
-114 243 247 239 250
-115 221 234 260 261
-116 244 246 269 261
-117 264 255 247 262
-118 233 245 252 263
-119 242 223 256 235
-120 266 257 249 250
-121 264 258 259 251
-122 265 266 252 263
-123 253 248 259 252
-124 267 268 240 230
-125 254 256 268 270
-126 243 255 269 260
-127 264 232 244 251
-128 265 266 269 260
-129 258 248 260 261
-130 242 254 266 257
-131 267 268 249 239
-132 264 267 270 262
-133 253 267 270 263
-134 265 257 251 262
-135 268 269 270 261
-136 1 12 2 20
-137 1 3 29 19
-138 1 4 7 20
-139 2 5 28 42
-140 11 1 6 29
-141 12 2 4 7
-142 3 40 51 8
-143 4 59 41 9
-144 2 18 42 10
-145 11 3 6 19
-146 56 13 35 5
-147 67 57 14 6
-148 57 58 15 7
-149 3 15 16 51
-150 4 59 27 17
-151 5 28 18 10
-152 47 50 8 21
-153 56 13 24 9
-154 22 79 59 10
-155 11 58 18 41
-156 12 23 70 40
-157 24 35 5 9
-158 23 67 25 6
-159 57 26 39 7
-160 15 16 40 8
-161 27 17 41 9
-162 66 13 30 32
-163 34 14 47 21
-164 67 89 16 31
-165 77 17 42 32
-166 70 27 28 19
-167 33 55 56 20
-168 34 14 50 8
-169 33 79 36 10
-170 11 37 41 54
-171 12 38 40 54
-172 23 57 14 25
-173 58 15 26 39
-174 78 46 21 43
-175 22 44 66 13
-176 22 44 30 32
-177 45 24 79 76
-178 46 90 25 51
-179 47 26 29 65
-180 55 28 39 19
-181 47 48 38 29
-182 56 37 49 20
-183 89 48 16 52
-184 77 49 17 53
-185 58 37 18 54
-186 22 33 36 59
-187 23 70 38 54
-188 91 60 30 64
-189 78 61 31 21
-190 46 61 31 43
-191 88 34 89 62
-192 77 35 63 64
-193 35 36 81 64
-194 49 42 53 32
-195 24 68 53 76
-196 90 25 69 65
-197 26 48 38 65
-198 55 70 27 39
-199 67 48 52 31
-200 33 55 37 49
-201 101 71 75 43
-202 44 100 72 76
-203 45 91 73 30
-204 45 60 73 64
-205 90 50 74 75
-206 46 69 51 65
-207 92 50 52 75
-208 88 34 69 80
-209 77 36 81 63
-210 45 68 79 53
-211 60 82 106 87
-212 88 110 61 83
-213 101 62 84 43
-214 44 100 63 85
-215 71 62 84 75
-216 72 63 85 76
-217 66 81 86 87
-218 66 68 87 98
-219 90 92 52 74
-220 89 69 80 62
-221 99 71 93 115
-222 82 72 95 87
-223 100 94 73 119
-224 60 72 95 106
-225 110 61 74 96
-226 88 83 74 96
-227 99 78 92 97
-228 99 78 80 109
-229 68 81 86 98
-230 102 124 82 104
-231 99 93 83 105
-232 110 103 127 84
-233 91 104 85 118
-234 71 115 83 105
-235 73 107 86 119
-236 100 94 107 86
-237 91 104 108 98
-238 80 92 97 109
-239 111 114 93 131
-240 112 124 82 94
-241 112 102 104 94
-242 113 95 119 130
-243 101 114 126 96
-244 116 127 84 97
-245 85 118 108 98
-246 110 103 116 97
-247 101 114 117 109
-248 111 123 102 129
-249 103 93 120 131
-250 111 103 114 120
-251 121 134 105 127
-252 122 123 106 118
-253 133 123 106 107
-254 125 95 108 130
-255 126 117 96 109
-256 113 125 108 119
-257 112 134 130 120
-258 121 102 113 129
-259 121 111 123 113
-260 115 126 128 129
-261 135 115 116 129
-262 132 134 105 117
-263 122 133 107 118
-264 121 132 127 117
-265 122 112 134 128
-266 122 128 130 120
-267 132 133 124 131
-268 124 135 125 131
-269 135 126 116 128
-270 132 133 135 125
0

**************