C4graphGraph forms for C4 [ 272, 1 ] = W(136,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 272, 1 ] = W(136,2).

(I) Following is a form readable by MAGMA:

g:=Graph<272|{ {2, 3}, {270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {1, 2}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {3, 4}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {15, 16}, {271, 272}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {191, 192}, {8, 143}, {80, 215}, {72, 207}, {64, 199}, {56, 191}, {16, 151}, {24, 159}, {32, 167}, {40, 175}, {48, 183}, {88, 223}, {96, 231}, {104, 239}, {112, 247}, {120, 255}, {1, 136}, {84, 221}, {83, 218}, {82, 219}, {81, 216}, {80, 217}, {71, 206}, {70, 207}, {69, 204}, {68, 205}, {67, 202}, {66, 203}, {65, 200}, {64, 201}, {55, 190}, {54, 191}, {53, 188}, {52, 189}, {51, 186}, {50, 187}, {2, 139}, {3, 138}, {4, 141}, {5, 140}, {6, 143}, {7, 142}, {16, 153}, {17, 152}, {18, 155}, {19, 154}, {20, 157}, {21, 156}, {22, 159}, {23, 158}, {32, 169}, {33, 168}, {34, 171}, {35, 170}, {36, 173}, {37, 172}, {38, 175}, {39, 174}, {48, 185}, {49, 184}, {85, 220}, {86, 223}, {87, 222}, {96, 233}, {97, 232}, {98, 235}, {99, 234}, {100, 237}, {101, 236}, {102, 239}, {103, 238}, {112, 249}, {113, 248}, {114, 251}, {115, 250}, {116, 253}, {117, 252}, {118, 255}, {119, 254}, {1, 138}, {82, 217}, {81, 218}, {70, 205}, {69, 206}, {66, 201}, {65, 202}, {54, 189}, {53, 190}, {50, 185}, {2, 137}, {5, 142}, {6, 141}, {17, 154}, {18, 153}, {21, 158}, {22, 157}, {33, 170}, {34, 169}, {37, 174}, {38, 173}, {49, 186}, {85, 222}, {86, 221}, {97, 234}, {98, 233}, {101, 238}, {102, 237}, {113, 250}, {114, 249}, {117, 254}, {118, 253}, {3, 140}, {84, 219}, {83, 220}, {68, 203}, {67, 204}, {52, 187}, {51, 188}, {4, 139}, {19, 156}, {20, 155}, {35, 172}, {36, 171}, {99, 236}, {100, 235}, {115, 252}, {116, 251}, {7, 144}, {79, 216}, {71, 208}, {15, 152}, {39, 176}, {47, 184}, {103, 240}, {111, 248}, {8, 145}, {79, 214}, {78, 215}, {77, 212}, {76, 213}, {75, 210}, {74, 211}, {73, 208}, {72, 209}, {9, 144}, {10, 147}, {11, 146}, {12, 149}, {13, 148}, {14, 151}, {15, 150}, {40, 177}, {41, 176}, {42, 179}, {43, 178}, {44, 181}, {45, 180}, {46, 183}, {47, 182}, {104, 241}, {105, 240}, {106, 243}, {107, 242}, {108, 245}, {109, 244}, {110, 247}, {111, 246}, {9, 146}, {78, 213}, {77, 214}, {74, 209}, {73, 210}, {10, 145}, {13, 150}, {14, 149}, {41, 178}, {42, 177}, {45, 182}, {46, 181}, {105, 242}, {106, 241}, {109, 246}, {110, 245}, {11, 148}, {76, 211}, {75, 212}, {12, 147}, {43, 180}, {44, 179}, {107, 244}, {108, 243}, {23, 160}, {31, 168}, {87, 224}, {95, 232}, {24, 161}, {25, 160}, {26, 163}, {27, 162}, {28, 165}, {29, 164}, {30, 167}, {31, 166}, {88, 225}, {89, 224}, {90, 227}, {91, 226}, {92, 229}, {93, 228}, {94, 231}, {95, 230}, {25, 162}, {26, 161}, {29, 166}, {30, 165}, {89, 226}, {90, 225}, {93, 230}, {94, 229}, {27, 164}, {28, 163}, {91, 228}, {92, 227}, {55, 192}, {63, 200}, {56, 193}, {63, 198}, {62, 199}, {61, 196}, {60, 197}, {59, 194}, {58, 195}, {57, 192}, {57, 194}, {62, 197}, {61, 198}, {58, 193}, {59, 196}, {60, 195}, {127, 128}, {1, 272}, {119, 256}, {127, 264}, {120, 257}, {121, 256}, {122, 259}, {123, 258}, {124, 261}, {125, 260}, {126, 263}, {127, 262}, {121, 258}, {122, 257}, {125, 262}, {126, 261}, {123, 260}, {124, 259}, {128, 263}, {136, 271}, {128, 265}, {129, 264}, {130, 267}, {131, 266}, {132, 269}, {133, 268}, {134, 271}, {135, 270}, {129, 266}, {130, 265}, {133, 270}, {134, 269}, {131, 268}, {132, 267}, {135, 272}, {137, 272}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (134, 270)
b: (124, 260)
c: (20, 156)
d: (51, 187)
e: (115, 251)
f: (84, 220)
g: (133, 269)
h: (9, 145)
m: (42, 178)
n1: (106, 242)
a1: (73, 209)
b1: (131, 267)
c1: (33, 169)
d1: (97, 233)
e1: (66, 202)
f1: (2, 138)
g1: (11, 147)
h1: (44, 180)
m1: (108, 244)
n2: (75, 211)
a2: (114, 250)
b2: (50, 186)
c2: (17, 153)
d2: (81, 217)
e2: (129, 265)
f2: (47, 183)
g2: (111, 247)
h2: (16, 152)
m2: (80, 216)
n3: (28, 164)
a3: (92, 228)
b3: (61, 197)
c3: (127, 263)
d3: (63, 199)
e3: (32, 168)
f3: (96, 232)
g3: (57, 193)
h3: (135, 271)
m3: (25, 161)
n4: (89, 225)
a4: (31, 167)
b4: (95, 231)
c4: (13, 149)
d4: (46, 182)
e4: (110, 246)
f4: (77, 213)
g4: (10, 146)
h4: (41, 177)
m4: (105, 241)
n5: (74, 210)
a5: (122, 258)
b5: (8, 144)
c5: (39, 175)
d5: (103, 239)
e5: (72, 208)
f5: (117, 253)
g5: (86, 222)
h5: (22, 158)
m5: (53, 189)
n6: (2, 136)(3, 135)(4, 134)(5, 133)(6, 132)(7, 131)(8, 130)(9, 129)(10, 128)(11, 127)(12, 126)(13, 125)(14, 124)(15, 123)(16, 122)(17, 121)(18, 120)(19, 119)(20, 118)(21, 117)(22, 116)(23, 115)(24, 114)(25, 113)(26, 112)(27, 111)(28, 110)(29, 109)(30, 108)(31, 107)(32, 106)(33, 105)(34, 104)(35, 103)(36, 102)(37, 101)(38, 100)(39, 99)(40, 98)(41, 97)(42, 96)(43, 95)(44, 94)(45, 93)(46, 92)(47, 91)(48, 90)(49, 89)(50, 88)(51, 87)(52, 86)(53, 85)(54, 84)(55, 83)(56, 82)(57, 81)(58, 80)(59, 79)(60, 78)(61, 77)(62, 76)(63, 75)(64, 74)(65, 73)(66, 72)(67, 71)(68, 70)(138, 272)(139, 271)(140, 270)(141, 269)(142, 268)(143, 267)(144, 266)(145, 265)(146, 264)(147, 263)(148, 262)(149, 261)(150, 260)(151, 259)(152, 258)(153, 257)(154, 256)(155, 255)(156, 254)(157, 253)(158, 252)(159, 251)(160, 250)(161, 249)(162, 248)(163, 247)(164, 246)(165, 245)(166, 244)(167, 243)(168, 242)(169, 241)(170, 240)(171, 239)(172, 238)(173, 237)(174, 236)(175, 235)(176, 234)(177, 233)(178, 232)(179, 231)(180, 230)(181, 229)(182, 228)(183, 227)(184, 226)(185, 225)(186, 224)(187, 223)(188, 222)(189, 221)(190, 220)(191, 219)(192, 218)(193, 217)(194, 216)(195, 215)(196, 214)(197, 213)(198, 212)(199, 211)(200, 210)(201, 209)(202, 208)(203, 207)(204, 206)
a6: (30, 166)
b6: (94, 230)
c6: (126, 262)
d6: (60, 196)
e6: (7, 143)
f6: (40, 176)
g6: (104, 240)
h6: (71, 207)
m6: (132, 268)
n7: (128, 264)
a7: (121, 257)
b7: (38, 174)
c7: (102, 238)
d7: (5, 141)
e7: (69, 205)
f7: (14, 150)
g7: (45, 181)
h7: (109, 245)
m7: (78, 214)
n8: (19, 155)
a8: (116, 252)
b8: (52, 188)
c8: (83, 219)
d8: (6, 142)
e8: (101, 237)
f8: (37, 173)
g8: (70, 206)
h8: (27, 163)
m8: (91, 227)
n9: (123, 259)
a9: (18, 154)
b9: (49, 185)
c9: (113, 249)
d9: (82, 218)
e9: (125, 261)
f9: (3, 139)
g9: (36, 172)
h9: (100, 236)
m9: (34, 170)
n10: (98, 234)
a10: (65, 201)
b10: (118, 254)
c10: (21, 157)
d10: (85, 221)
e10: (54, 190)
f10: (4, 140)
g10: (99, 235)
h10: (35, 171)
m10: (68, 204)
n11: (24, 160)
a11: (88, 224)
b11: (119, 255)
c11: (55, 191)
d11: (120, 256)
e11: (87, 223)
f11: (23, 159)
g11: (56, 192)
h11: (59, 195)
m11: (64, 200)
n12: (130, 266)
a12: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136)(137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272)
b12: (12, 148)
c12: (43, 179)
d12: (107, 243)
e12: (76, 212)
f12: (29, 165)
g12: (93, 229)
h12: (15, 151)
m12: (48, 184)
n13: (112, 248)
a13: (79, 215)
b13: (26, 162)
c13: (90, 226)
d13: (136, 272)
e13: (58, 194)
f13: (62, 198)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 272, 1 ]
272
-1 2 136 138 272
-2 1 3 137 139
-3 2 4 138 140
-4 3 5 139 141
-5 4 6 140 142
-6 143 5 7 141
-7 144 6 8 142
-8 143 145 7 9
-9 144 146 8 10
-10 11 145 147 9
-11 12 146 148 10
-12 11 13 147 149
-13 12 14 148 150
-14 13 15 149 151
-15 14 16 150 152
-16 15 17 151 153
-17 154 16 18 152
-18 155 17 19 153
-19 154 156 18 20
-20 155 157 19 21
-21 22 156 158 20
-22 23 157 159 21
-23 22 24 158 160
-24 23 25 159 161
-25 24 26 160 162
-26 25 27 161 163
-27 26 28 162 164
-28 165 27 29 163
-29 166 28 30 164
-30 165 167 29 31
-31 166 168 30 32
-32 33 167 169 31
-33 34 168 170 32
-34 33 35 169 171
-35 34 36 170 172
-36 35 37 171 173
-37 36 38 172 174
-38 37 39 173 175
-39 176 38 40 174
-40 177 39 41 175
-41 176 178 40 42
-42 177 179 41 43
-43 44 178 180 42
-44 45 179 181 43
-45 44 46 180 182
-46 45 47 181 183
-47 46 48 182 184
-48 47 49 183 185
-49 48 50 184 186
-50 187 49 51 185
-51 188 50 52 186
-52 187 189 51 53
-53 188 190 52 54
-54 55 189 191 53
-55 56 190 192 54
-56 55 57 191 193
-57 56 58 192 194
-58 57 59 193 195
-59 58 60 194 196
-60 59 61 195 197
-61 198 60 62 196
-62 199 61 63 197
-63 198 200 62 64
-64 199 201 63 65
-65 66 200 202 64
-66 67 201 203 65
-67 66 68 202 204
-68 67 69 203 205
-69 68 70 204 206
-70 69 71 205 207
-71 70 72 206 208
-72 209 71 73 207
-73 210 72 74 208
-74 209 211 73 75
-75 210 212 74 76
-76 77 211 213 75
-77 78 212 214 76
-78 77 79 213 215
-79 78 80 214 216
-80 79 81 215 217
-81 80 82 216 218
-82 81 83 217 219
-83 220 82 84 218
-84 221 83 85 219
-85 220 222 84 86
-86 221 223 85 87
-87 88 222 224 86
-88 89 223 225 87
-89 88 90 224 226
-90 89 91 225 227
-91 90 92 226 228
-92 91 93 227 229
-93 92 94 228 230
-94 231 93 95 229
-95 232 94 96 230
-96 231 233 95 97
-97 232 234 96 98
-98 99 233 235 97
-99 100 234 236 98
-100 99 101 235 237
-101 100 102 236 238
-102 101 103 237 239
-103 102 104 238 240
-104 103 105 239 241
-105 242 104 106 240
-106 243 105 107 241
-107 242 244 106 108
-108 243 245 107 109
-109 110 244 246 108
-110 111 245 247 109
-111 110 112 246 248
-112 111 113 247 249
-113 112 114 248 250
-114 113 115 249 251
-115 114 116 250 252
-116 253 115 117 251
-117 254 116 118 252
-118 253 255 117 119
-119 254 256 118 120
-120 121 255 257 119
-121 122 256 258 120
-122 121 123 257 259
-123 122 124 258 260
-124 123 125 259 261
-125 124 126 260 262
-126 125 127 261 263
-127 264 126 128 262
-128 265 127 129 263
-129 264 266 128 130
-130 265 267 129 131
-131 132 266 268 130
-132 133 267 269 131
-133 132 134 268 270
-134 133 135 269 271
-135 134 136 270 272
-136 1 135 137 271
-137 2 136 138 272
-138 1 3 137 139
-139 2 4 138 140
-140 3 5 139 141
-141 4 6 140 142
-142 143 5 7 141
-143 144 6 8 142
-144 143 145 7 9
-145 144 146 8 10
-146 11 145 147 9
-147 12 146 148 10
-148 11 13 147 149
-149 12 14 148 150
-150 13 15 149 151
-151 14 16 150 152
-152 15 17 151 153
-153 154 16 18 152
-154 155 17 19 153
-155 154 156 18 20
-156 155 157 19 21
-157 22 156 158 20
-158 23 157 159 21
-159 22 24 158 160
-160 23 25 159 161
-161 24 26 160 162
-162 25 27 161 163
-163 26 28 162 164
-164 165 27 29 163
-165 166 28 30 164
-166 165 167 29 31
-167 166 168 30 32
-168 33 167 169 31
-169 34 168 170 32
-170 33 35 169 171
-171 34 36 170 172
-172 35 37 171 173
-173 36 38 172 174
-174 37 39 173 175
-175 176 38 40 174
-176 177 39 41 175
-177 176 178 40 42
-178 177 179 41 43
-179 44 178 180 42
-180 45 179 181 43
-181 44 46 180 182
-182 45 47 181 183
-183 46 48 182 184
-184 47 49 183 185
-185 48 50 184 186
-186 187 49 51 185
-187 188 50 52 186
-188 187 189 51 53
-189 188 190 52 54
-190 55 189 191 53
-191 56 190 192 54
-192 55 57 191 193
-193 56 58 192 194
-194 57 59 193 195
-195 58 60 194 196
-196 59 61 195 197
-197 198 60 62 196
-198 199 61 63 197
-199 198 200 62 64
-200 199 201 63 65
-201 66 200 202 64
-202 67 201 203 65
-203 66 68 202 204
-204 67 69 203 205
-205 68 70 204 206
-206 69 71 205 207
-207 70 72 206 208
-208 209 71 73 207
-209 210 72 74 208
-210 209 211 73 75
-211 210 212 74 76
-212 77 211 213 75
-213 78 212 214 76
-214 77 79 213 215
-215 78 80 214 216
-216 79 81 215 217
-217 80 82 216 218
-218 81 83 217 219
-219 220 82 84 218
-220 221 83 85 219
-221 220 222 84 86
-222 221 223 85 87
-223 88 222 224 86
-224 89 223 225 87
-225 88 90 224 226
-226 89 91 225 227
-227 90 92 226 228
-228 91 93 227 229
-229 92 94 228 230
-230 231 93 95 229
-231 232 94 96 230
-232 231 233 95 97
-233 232 234 96 98
-234 99 233 235 97
-235 100 234 236 98
-236 99 101 235 237
-237 100 102 236 238
-238 101 103 237 239
-239 102 104 238 240
-240 103 105 239 241
-241 242 104 106 240
-242 243 105 107 241
-243 242 244 106 108
-244 243 245 107 109
-245 110 244 246 108
-246 111 245 247 109
-247 110 112 246 248
-248 111 113 247 249
-249 112 114 248 250
-250 113 115 249 251
-251 114 116 250 252
-252 253 115 117 251
-253 254 116 118 252
-254 253 255 117 119
-255 254 256 118 120
-256 121 255 257 119
-257 122 256 258 120
-258 121 123 257 259
-259 122 124 258 260
-260 123 125 259 261
-261 124 126 260 262
-262 125 127 261 263
-263 264 126 128 262
-264 265 127 129 263
-265 264 266 128 130
-266 265 267 129 131
-267 132 266 268 130
-268 133 267 269 131
-269 132 134 268 270
-270 133 135 269 271
-271 134 136 270 272
-272 1 135 137 271
0

**************