[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 272, 3 ] =
C_272(1,103).
(I) Following is a form readable by MAGMA:
g:=Graph<272|{ {2, 3}, {270, 271}, {268, 269}, {266, 267}, {264, 265}, {262,
263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251},
{248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236,
237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225},
{222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210,
211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199},
{196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {90, 91}, {88, 89},
{86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73},
{70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57},
{4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20,
21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36,
37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52,
53}, {54, 55}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103},
{104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116,
117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129},
{130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142,
143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155},
{156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168,
169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181},
{182, 183}, {184, 185}, {186, 187}, {1, 2}, {269, 270}, {265, 266}, {261, 262},
{257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233,
234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210},
{205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {89, 90}, {85, 86},
{81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6},
{9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38},
{41, 42}, {45, 46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {105,
106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130},
{133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157,
158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182},
{185, 186}, {3, 4}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236},
{227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {83, 84}, {75, 76},
{67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52},
{91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140},
{147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {7, 8},
{263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72},
{23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152},
{167, 168}, {183, 184}, {15, 16}, {271, 272}, {239, 240}, {207, 208}, {79, 80},
{47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96},
{159, 160}, {8, 111}, {16, 119}, {24, 127}, {128, 231}, {136, 239}, {144, 247},
{152, 255}, {1, 104}, {3, 106}, {5, 108}, {7, 110}, {17, 120}, {19, 122}, {21,
124}, {23, 126}, {129, 232}, {131, 234}, {133, 236}, {135, 238}, {145, 248},
{147, 250}, {149, 252}, {151, 254}, {2, 105}, {6, 109}, {18, 121}, {22, 125},
{130, 233}, {134, 237}, {146, 249}, {150, 253}, {4, 107}, {20, 123}, {132, 235},
{148, 251}, {9, 112}, {11, 114}, {13, 116}, {15, 118}, {137, 240}, {139, 242},
{141, 244}, {143, 246}, {10, 113}, {14, 117}, {138, 241}, {142, 245}, {12, 115},
{191, 192}, {63, 64}, {140, 243}, {25, 128}, {89, 192}, {63, 166}, {61, 164},
{59, 162}, {57, 160}, {27, 130}, {29, 132}, {31, 134}, {91, 194}, {93, 196},
{95, 198}, {121, 224}, {123, 226}, {125, 228}, {127, 230}, {26, 129}, {90, 193},
{62, 165}, {58, 161}, {30, 133}, {94, 197}, {122, 225}, {126, 229}, {28, 131},
{60, 163}, {92, 195}, {124, 227}, {32, 135}, {56, 159}, {40, 143}, {48, 151},
{96, 199}, {104, 207}, {112, 215}, {120, 223}, {2, 171}, {86, 255}, {84, 253},
{82, 251}, {80, 249}, {70, 239}, {68, 237}, {66, 235}, {64, 233}, {4, 173}, {6,
175}, {16, 185}, {18, 187}, {20, 189}, {22, 191}, {33, 136}, {35, 138}, {37,
140}, {39, 142}, {49, 152}, {51, 154}, {53, 156}, {55, 158}, {97, 200}, {99,
202}, {101, 204}, {103, 206}, {113, 216}, {115, 218}, {117, 220}, {119, 222},
{1, 170}, {85, 254}, {81, 250}, {69, 238}, {65, 234}, {5, 174}, {17, 186}, {21,
190}, {34, 137}, {38, 141}, {50, 153}, {54, 157}, {98, 201}, {102, 205}, {114,
217}, {118, 221}, {3, 172}, {83, 252}, {67, 236}, {19, 188}, {36, 139}, {52,
155}, {100, 203}, {116, 219}, {7, 176}, {79, 248}, {71, 240}, {15, 184}, {8,
177}, {78, 247}, {76, 245}, {74, 243}, {72, 241}, {10, 179}, {12, 181}, {14,
183}, {41, 144}, {43, 146}, {45, 148}, {47, 150}, {105, 208}, {107, 210}, {109,
212}, {111, 214}, {9, 178}, {77, 246}, {73, 242}, {13, 182}, {42, 145}, {46,
149}, {106, 209}, {110, 213}, {11, 180}, {75, 244}, {44, 147}, {108, 211}, {23,
192}, {63, 232}, {31, 200}, {55, 224}, {24, 193}, {62, 231}, {60, 229}, {58,
227}, {56, 225}, {26, 195}, {28, 197}, {30, 199}, {25, 194}, {61, 230}, {57,
226}, {29, 198}, {27, 196}, {59, 228}, {64, 167}, {88, 191}, {80, 183}, {72,
175}, {32, 201}, {87, 190}, {85, 188}, {83, 186}, {81, 184}, {71, 174}, {69,
172}, {67, 170}, {65, 168}, {34, 203}, {36, 205}, {38, 207}, {48, 217}, {50,
219}, {52, 221}, {54, 223}, {33, 202}, {86, 189}, {82, 185}, {70, 173}, {66,
169}, {37, 206}, {49, 218}, {53, 222}, {35, 204}, {84, 187}, {68, 171}, {51,
220}, {39, 208}, {47, 216}, {40, 209}, {79, 182}, {77, 180}, {75, 178}, {73,
176}, {42, 211}, {44, 213}, {46, 215}, {41, 210}, {78, 181}, {74, 177}, {45,
214}, {43, 212}, {76, 179}, {127, 128}, {1, 272}, {87, 256}, {95, 264}, {88,
257}, {90, 259}, {92, 261}, {94, 263}, {89, 258}, {93, 262}, {91, 260}, {96,
265}, {98, 267}, {100, 269}, {102, 271}, {97, 266}, {101, 270}, {99, 268}, {103,
272}, {153, 256}, {155, 258}, {157, 260}, {159, 262}, {154, 257}, {158, 261},
{156, 259}, {160, 263}, {168, 271}, {161, 264}, {163, 266}, {165, 268}, {167,
270}, {162, 265}, {166, 269}, {164, 267}, {169, 272}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 104)(3, 207)(4, 38)(5, 141)(6, 244)(7, 75)(8, 178)(10, 112)(11, 215)(12,
46)(13, 149)(14, 252)(15, 83)(16, 186)(18, 120)(19, 223)(20, 54)(21, 157)(22,
260)(23, 91)(24, 194)(26, 128)(27, 231)(28, 62)(29, 165)(30, 268)(31, 99)(32,
202)(34, 136)(35, 239)(36, 70)(37, 173)(39, 107)(40, 210)(42, 144)(43, 247)(44,
78)(45, 181)(47, 115)(48, 218)(50, 152)(51, 255)(52, 86)(53, 189)(55, 123)(56,
226)(58, 160)(59, 263)(60, 94)(61, 197)(63, 131)(64, 234)(66, 168)(67, 271)(68,
102)(69, 205)(71, 139)(72, 242)(74, 176)(76, 110)(77, 213)(79, 147)(80, 250)(82,
184)(84, 118)(85, 221)(87, 155)(88, 258)(90, 192)(92, 126)(93, 229)(95, 163)(96,
266)(98, 200)(100, 134)(101, 237)(103, 171)(106, 208)(108, 142)(109, 245)(111,
179)(114, 216)(116, 150)(117, 253)(119, 187)(122, 224)(124, 158)(125, 261)(127,
195)(130, 232)(132, 166)(133, 269)(135, 203)(138, 240)(140, 174)(143, 211)(146,
248)(148, 182)(151, 219)(154, 256)(156, 190)(159, 227)(162, 264)(164, 198)(167,
235)(170, 272)(172, 206)(175, 243)(180, 214)(183, 251)(188, 222)(191, 259)(196,
230)(199, 267)(204, 238)(212, 246)(220, 254)(228, 262)(236, 270)
c: (2, 170)(3, 67)(4, 236)(5, 133)(6, 30)(7, 199)(8, 96)(9, 265)(10, 162)(11,
59)(12, 228)(13, 125)(14, 22)(15, 191)(16, 88)(17, 257)(18, 154)(19, 51)(20,
220)(21, 117)(23, 183)(24, 80)(25, 249)(26, 146)(27, 43)(28, 212)(29, 109)(31,
175)(32, 72)(33, 241)(34, 138)(36, 204)(37, 101)(38, 270)(39, 167)(40, 64)(41,
233)(42, 130)(44, 196)(45, 93)(46, 262)(47, 159)(48, 56)(49, 225)(50, 122)(52,
188)(53, 85)(54, 254)(55, 151)(57, 217)(58, 114)(60, 180)(61, 77)(62, 246)(63,
143)(65, 209)(66, 106)(68, 172)(70, 238)(71, 135)(73, 201)(74, 98)(75, 267)(76,
164)(78, 230)(79, 127)(81, 193)(82, 90)(83, 259)(84, 156)(86, 222)(87, 119)(89,
185)(91, 251)(92, 148)(94, 214)(95, 111)(97, 177)(99, 243)(100, 140)(102,
206)(104, 272)(105, 169)(107, 235)(108, 132)(110, 198)(112, 264)(113, 161)(115,
227)(116, 124)(118, 190)(120, 256)(121, 153)(123, 219)(126, 182)(128, 248)(129,
145)(131, 211)(134, 174)(136, 240)(139, 203)(141, 269)(142, 166)(144, 232)(147,
195)(149, 261)(150, 158)(152, 224)(155, 187)(157, 253)(160, 216)(163, 179)(165,
245)(168, 208)(173, 237)(176, 200)(178, 266)(181, 229)(184, 192)(186, 258)(189,
221)(194, 250)(197, 213)(202, 242)(207, 271)(210, 234)(215, 263)(218, 226)(223,
255)(231, 247)(244, 268)(252, 260)
C4[ 272, 3 ]
272
-1 2 104 170 272
-2 1 3 105 171
-3 2 4 106 172
-4 3 5 107 173
-5 4 6 108 174
-6 5 7 109 175
-7 110 176 6 8
-8 111 177 7 9
-9 112 178 8 10
-10 11 113 179 9
-11 12 114 180 10
-12 11 13 115 181
-13 12 14 116 182
-14 13 15 117 183
-15 14 16 118 184
-16 15 17 119 185
-17 16 18 120 186
-18 121 187 17 19
-19 122 188 18 20
-20 123 189 19 21
-21 22 124 190 20
-22 23 125 191 21
-23 22 24 126 192
-24 23 25 127 193
-25 24 26 128 194
-26 25 27 129 195
-27 26 28 130 196
-28 27 29 131 197
-29 132 198 28 30
-30 133 199 29 31
-31 134 200 30 32
-32 33 135 201 31
-33 34 136 202 32
-34 33 35 137 203
-35 34 36 138 204
-36 35 37 139 205
-37 36 38 140 206
-38 37 39 141 207
-39 38 40 142 208
-40 143 209 39 41
-41 144 210 40 42
-42 145 211 41 43
-43 44 146 212 42
-44 45 147 213 43
-45 44 46 148 214
-46 45 47 149 215
-47 46 48 150 216
-48 47 49 151 217
-49 48 50 152 218
-50 49 51 153 219
-51 154 220 50 52
-52 155 221 51 53
-53 156 222 52 54
-54 55 157 223 53
-55 56 158 224 54
-56 55 57 159 225
-57 56 58 160 226
-58 57 59 161 227
-59 58 60 162 228
-60 59 61 163 229
-61 60 62 164 230
-62 165 231 61 63
-63 166 232 62 64
-64 167 233 63 65
-65 66 168 234 64
-66 67 169 235 65
-67 66 68 170 236
-68 67 69 171 237
-69 68 70 172 238
-70 69 71 173 239
-71 70 72 174 240
-72 71 73 175 241
-73 176 242 72 74
-74 177 243 73 75
-75 178 244 74 76
-76 77 179 245 75
-77 78 180 246 76
-78 77 79 181 247
-79 78 80 182 248
-80 79 81 183 249
-81 80 82 184 250
-82 81 83 185 251
-83 82 84 186 252
-84 187 253 83 85
-85 188 254 84 86
-86 189 255 85 87
-87 88 190 256 86
-88 89 191 257 87
-89 88 90 192 258
-90 89 91 193 259
-91 90 92 194 260
-92 91 93 195 261
-93 92 94 196 262
-94 93 95 197 263
-95 198 264 94 96
-96 199 265 95 97
-97 200 266 96 98
-98 99 201 267 97
-99 100 202 268 98
-100 99 101 203 269
-101 100 102 204 270
-102 101 103 205 271
-103 102 104 206 272
-104 1 103 105 207
-105 2 104 106 208
-106 209 3 105 107
-107 210 4 106 108
-108 211 5 107 109
-109 110 212 6 108
-110 111 213 7 109
-111 110 112 214 8
-112 111 113 215 9
-113 112 114 216 10
-114 11 113 115 217
-115 12 114 116 218
-116 13 115 117 219
-117 220 14 116 118
-118 221 15 117 119
-119 222 16 118 120
-120 121 223 17 119
-121 122 224 18 120
-122 121 123 225 19
-123 122 124 226 20
-124 123 125 227 21
-125 22 124 126 228
-126 23 125 127 229
-127 24 126 128 230
-128 231 25 127 129
-129 232 26 128 130
-130 233 27 129 131
-131 132 234 28 130
-132 133 235 29 131
-133 132 134 236 30
-134 133 135 237 31
-135 134 136 238 32
-136 33 135 137 239
-137 34 136 138 240
-138 35 137 139 241
-139 242 36 138 140
-140 243 37 139 141
-141 244 38 140 142
-142 143 245 39 141
-143 144 246 40 142
-144 143 145 247 41
-145 144 146 248 42
-146 145 147 249 43
-147 44 146 148 250
-148 45 147 149 251
-149 46 148 150 252
-150 253 47 149 151
-151 254 48 150 152
-152 255 49 151 153
-153 154 256 50 152
-154 155 257 51 153
-155 154 156 258 52
-156 155 157 259 53
-157 156 158 260 54
-158 55 157 159 261
-159 56 158 160 262
-160 57 159 161 263
-161 264 58 160 162
-162 265 59 161 163
-163 266 60 162 164
-164 165 267 61 163
-165 166 268 62 164
-166 165 167 269 63
-167 166 168 270 64
-168 167 169 271 65
-169 66 168 170 272
-170 1 67 169 171
-171 2 68 170 172
-172 3 69 171 173
-173 4 70 172 174
-174 5 71 173 175
-175 176 6 72 174
-176 177 7 73 175
-177 176 178 8 74
-178 177 179 9 75
-179 178 180 10 76
-180 11 77 179 181
-181 12 78 180 182
-182 13 79 181 183
-183 14 80 182 184
-184 15 81 183 185
-185 16 82 184 186
-186 187 17 83 185
-187 188 18 84 186
-188 187 189 19 85
-189 188 190 20 86
-190 189 191 21 87
-191 22 88 190 192
-192 23 89 191 193
-193 24 90 192 194
-194 25 91 193 195
-195 26 92 194 196
-196 27 93 195 197
-197 198 28 94 196
-198 199 29 95 197
-199 198 200 30 96
-200 199 201 31 97
-201 200 202 32 98
-202 33 99 201 203
-203 34 100 202 204
-204 35 101 203 205
-205 36 102 204 206
-206 37 103 205 207
-207 38 104 206 208
-208 209 39 105 207
-209 210 40 106 208
-210 209 211 41 107
-211 210 212 42 108
-212 211 213 43 109
-213 44 110 212 214
-214 45 111 213 215
-215 46 112 214 216
-216 47 113 215 217
-217 48 114 216 218
-218 49 115 217 219
-219 220 50 116 218
-220 221 51 117 219
-221 220 222 52 118
-222 221 223 53 119
-223 222 224 54 120
-224 55 121 223 225
-225 56 122 224 226
-226 57 123 225 227
-227 58 124 226 228
-228 59 125 227 229
-229 60 126 228 230
-230 231 61 127 229
-231 232 62 128 230
-232 231 233 63 129
-233 232 234 64 130
-234 233 235 65 131
-235 66 132 234 236
-236 67 133 235 237
-237 68 134 236 238
-238 69 135 237 239
-239 70 136 238 240
-240 71 137 239 241
-241 242 72 138 240
-242 243 73 139 241
-243 242 244 74 140
-244 243 245 75 141
-245 244 246 76 142
-246 77 143 245 247
-247 78 144 246 248
-248 79 145 247 249
-249 80 146 248 250
-250 81 147 249 251
-251 82 148 250 252
-252 253 83 149 251
-253 254 84 150 252
-254 253 255 85 151
-255 254 256 86 152
-256 255 257 87 153
-257 88 154 256 258
-258 89 155 257 259
-259 90 156 258 260
-260 91 157 259 261
-261 92 158 260 262
-262 93 159 261 263
-263 264 94 160 262
-264 265 95 161 263
-265 264 266 96 162
-266 265 267 97 163
-267 266 268 98 164
-268 99 165 267 269
-269 100 166 268 270
-270 101 167 269 271
-271 102 168 270 272
-272 1 103 169 271
0