C4graphGraph forms for C4 [ 272, 25 ] = SDD(W(34,2))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 272, 25 ] = SDD(W(34,2)).

(I) Following is a form readable by MAGMA:

g:=Graph<272|{ {129, 246}, {128, 248}, {129, 248}, {131, 254}, {22, 150}, {69, 197}, {56, 184}, {33, 161}, {34, 162}, {35, 163}, {36, 164}, {81, 209}, {93, 221}, {105, 233}, {117, 245}, {11, 138}, {78, 207}, {77, 204}, {70, 199}, {69, 196}, {66, 195}, {54, 183}, {51, 178}, {81, 208}, {82, 211}, {89, 216}, {90, 219}, {93, 220}, {94, 223}, {101, 228}, {102, 231}, {105, 232}, {106, 235}, {113, 240}, {114, 243}, {117, 244}, {118, 247}, {125, 252}, {126, 255}, {20, 150}, {21, 151}, {24, 154}, {38, 164}, {40, 170}, {50, 176}, {18, 145}, {57, 186}, {53, 182}, {31, 156}, {9, 141}, {74, 206}, {73, 205}, {72, 204}, {59, 191}, {58, 190}, {10, 142}, {11, 143}, {41, 173}, {43, 175}, {48, 180}, {80, 212}, {83, 215}, {96, 228}, {97, 229}, {98, 230}, {104, 236}, {107, 239}, {120, 252}, {121, 253}, {122, 254}, {18, 151}, {64, 197}, {25, 156}, {26, 159}, {27, 158}, {34, 167}, {88, 221}, {112, 245}, {19, 149}, {73, 207}, {60, 186}, {57, 191}, {52, 178}, {22, 144}, {35, 165}, {37, 163}, {42, 172}, {47, 169}, {85, 211}, {97, 231}, {109, 235}, {121, 255}, {23, 144}, {76, 203}, {67, 196}, {65, 198}, {51, 180}, {89, 222}, {91, 220}, {100, 227}, {113, 246}, {115, 244}, {124, 251}, {1, 137}, {66, 202}, {53, 189}, {27, 147}, {102, 238}, {114, 250}, {39, 174}, {64, 201}, {63, 182}, {60, 181}, {49, 184}, {86, 223}, {87, 222}, {93, 212}, {98, 235}, {99, 234}, {100, 237}, {105, 224}, {112, 249}, {1, 139}, {78, 196}, {70, 204}, {6, 140}, {7, 141}, {33, 171}, {82, 216}, {84, 222}, {90, 208}, {94, 212}, {96, 234}, {106, 224}, {118, 252}, {126, 244}, {1, 138}, {73, 194}, {65, 202}, {2, 137}, {4, 143}, {16, 155}, {50, 185}, {101, 238}, {109, 230}, {113, 250}, {121, 242}, {3, 143}, {71, 203}, {68, 200}, {67, 207}, {55, 187}, {17, 157}, {31, 147}, {84, 216}, {85, 217}, {86, 218}, {115, 255}, {116, 248}, {119, 251}, {31, 146}, {64, 205}, {49, 188}, {100, 233}, {112, 253}, {4, 138}, {73, 199}, {5, 139}, {16, 158}, {17, 159}, {19, 157}, {23, 153}, {39, 169}, {83, 221}, {85, 219}, {96, 238}, {121, 247}, {1, 142}, {65, 206}, {56, 183}, {2, 141}, {3, 140}, {23, 152}, {33, 174}, {50, 189}, {80, 223}, {88, 215}, {93, 210}, {99, 236}, {101, 234}, {103, 232}, {113, 254}, {14, 158}, {35, 179}, {36, 180}, {5, 148}, {74, 219}, {70, 215}, {44, 189}, {98, 243}, {106, 251}, {110, 255}, {2, 144}, {72, 218}, {71, 213}, {3, 145}, {9, 155}, {15, 157}, {96, 242}, {107, 249}, {108, 254}, {6, 149}, {74, 217}, {63, 172}, {56, 171}, {52, 167}, {7, 148}, {11, 152}, {34, 177}, {41, 186}, {43, 184}, {98, 241}, {110, 253}, {2, 150}, {79, 219}, {57, 173}, {52, 160}, {3, 151}, {8, 156}, {12, 152}, {33, 181}, {42, 190}, {103, 243}, {104, 252}, {7, 146}, {76, 217}, {67, 214}, {56, 173}, {12, 153}, {40, 189}, {44, 185}, {46, 187}, {100, 241}, {36, 178}, {75, 221}, {71, 209}, {41, 191}, {99, 245}, {107, 253}, {108, 250}, {43, 188}, {77, 218}, {75, 220}, {68, 211}, {66, 213}, {63, 168}, {51, 164}, {45, 186}, {46, 185}, {81, 198}, {99, 244}, {101, 242}, {111, 248}, {45, 181}, {78, 214}, {74, 211}, {76, 213}, {75, 210}, {81, 200}, {110, 247}, {111, 246}, {117, 236}, {8, 146}, {72, 210}, {15, 149}, {42, 176}, {48, 170}, {82, 200}, {106, 240}, {108, 246}, {114, 232}, {118, 236}, {8, 147}, {77, 214}, {9, 146}, {21, 142}, {22, 141}, {39, 188}, {85, 206}, {4, 152}, {68, 216}, {5, 153}, {6, 154}, {7, 155}, {12, 144}, {13, 145}, {44, 176}, {47, 179}, {108, 240}, {109, 241}, {110, 242}, {9, 148}, {76, 209}, {10, 151}, {14, 147}, {18, 143}, {103, 250}, {18, 140}, {72, 214}, {71, 217}, {40, 182}, {49, 175}, {107, 245}, {109, 243}, {22, 137}, {79, 208}, {77, 210}, {75, 212}, {53, 170}, {102, 249}, {104, 247}, {112, 239}, {117, 234}, {14, 175}, {6, 164}, {79, 237}, {67, 225}, {91, 249}, {16, 179}, {21, 177}, {26, 190}, {17, 180}, {52, 145}, {25, 188}, {4, 162}, {5, 163}, {30, 184}, {15, 168}, {68, 227}, {20, 179}, {92, 251}, {11, 162}, {24, 177}, {28, 181}, {30, 183}, {32, 137}, {12, 166}, {13, 167}, {26, 176}, {32, 138}, {38, 140}, {29, 182}, {32, 139}, {10, 166}, {92, 240}, {8, 165}, {79, 226}, {13, 160}, {48, 157}, {32, 142}, {37, 139}, {95, 241}, {14, 161}, {78, 225}, {15, 160}, {48, 159}, {25, 169}, {20, 165}, {23, 166}, {29, 172}, {37, 148}, {47, 158}, {82, 227}, {86, 231}, {94, 239}, {28, 174}, {83, 225}, {84, 230}, {95, 237}, {19, 160}, {21, 166}, {30, 173}, {38, 149}, {86, 229}, {27, 175}, {47, 155}, {80, 228}, {29, 168}, {30, 171}, {35, 150}, {42, 159}, {91, 238}, {26, 172}, {83, 229}, {84, 226}, {95, 233}, {20, 163}, {25, 174}, {28, 171}, {87, 224}, {90, 237}, {92, 235}, {105, 222}, {34, 154}, {90, 226}, {16, 169}, {88, 225}, {24, 162}, {27, 161}, {31, 165}, {94, 228}, {102, 220}, {10, 177}, {17, 170}, {19, 168}, {39, 156}, {89, 226}, {97, 218}, {37, 153}, {38, 154}, {91, 231}, {92, 224}, {95, 227}, {28, 161}, {88, 229}, {87, 233}, {97, 223}, {13, 178}, {24, 167}, {80, 239}, {87, 232}, {89, 230}, {29, 192}, {55, 215}, {40, 201}, {41, 203}, {54, 213}, {36, 192}, {43, 193}, {46, 196}, {46, 197}, {45, 193}, {44, 194}, {62, 208}, {45, 195}, {62, 209}, {49, 193}, {61, 205}, {55, 199}, {50, 194}, {59, 202}, {57, 203}, {61, 207}, {51, 192}, {58, 201}, {54, 195}, {66, 183}, {59, 206}, {62, 200}, {58, 205}, {62, 198}, {61, 199}, {55, 204}, {53, 201}, {69, 185}, {54, 202}, {59, 198}, {70, 187}, {60, 193}, {64, 190}, {69, 187}, {65, 191}, {58, 197}, {63, 192}, {61, 194}, {60, 195}, {103, 261}, {111, 257}, {104, 263}, {111, 256}, {127, 272}, {116, 260}, {122, 266}, {123, 267}, {126, 270}, {118, 263}, {120, 265}, {119, 261}, {122, 264}, {124, 264}, {125, 265}, {127, 267}, {115, 262}, {127, 266}, {119, 257}, {114, 261}, {116, 259}, {123, 268}, {126, 262}, {116, 269}, {122, 259}, {123, 258}, {124, 261}, {120, 258}, {125, 262}, {115, 270}, {124, 257}, {120, 262}, {119, 264}, {123, 260}, {125, 258}, {127, 256}, {129, 257}, {131, 259}, {129, 256}, {136, 265}, {133, 263}, {134, 260}, {128, 259}, {128, 260}, {134, 258}, {130, 263}, {136, 269}, {135, 256}, {136, 271}, {131, 266}, {133, 268}, {132, 269}, {133, 271}, {134, 268}, {131, 264}, {133, 270}, {132, 271}, {130, 270}, {135, 267}, {128, 269}, {135, 266}, {134, 267}, {130, 271}, {132, 265}, {130, 268}, {132, 272}, {135, 272}, {136, 272} }>;

(II) A more general form is to represent the graph as the orbit of {129, 246} under the group generated by the following permutations:

a: (84, 95)(89, 100)(216, 227)(222, 233)(226, 237)(230, 241)
b: (120, 125)
c: (5, 37)
d: (1, 2)(3, 8)(4, 7)(5, 12)(6, 14)(9, 11)(10, 20)(13, 25)(15, 28)(16, 24)(17, 30)(18, 31)(19, 33)(21, 35)(22, 32)(23, 37)(26, 41)(27, 38)(29, 45)(34, 47)(36, 43)(39, 52)(40, 54)(42, 57)(44, 59)(46, 62)(48, 56)(49, 51)(50, 65)(53, 66)(55, 68)(58, 71)(60, 63)(61, 74)(64, 76)(67, 79)(69, 81)(70, 82)(72, 84)(73, 85)(75, 87)(77, 89)(78, 90)(80, 92)(83, 95)(86, 98)(88, 100)(91, 103)(93, 105)(94, 106)(96, 108)(97, 109)(99, 111)(101, 113)(102, 114)(104, 116)(107, 119)(110, 122)(112, 124)(115, 127)(117, 129)(118, 128)(120, 123)(121, 131)(125, 134)(126, 135)(130, 132)(133, 136)(138, 141)(139, 144)(140, 147)(142, 150)(143, 146)(145, 156)(148, 152)(149, 161)(151, 165)(154, 158)(155, 162)(157, 171)(159, 173)(160, 174)(163, 166)(164, 175)(167, 169)(168, 181)(170, 183)(172, 186)(176, 191)(177, 179)(178, 188)(180, 184)(182, 195)(185, 198)(187, 200)(189, 202)(190, 203)(192, 193)(194, 206)(196, 208)(197, 209)(199, 211)(201, 213)(204, 216)(205, 217)(207, 219)(210, 222)(212, 224)(214, 226)(215, 227)(218, 230)(220, 232)(221, 233)(223, 235)(225, 237)(228, 240)(229, 241)(231, 243)(234, 246)(236, 248)(238, 250)(239, 251)(242, 254)(244, 256)(245, 257)(247, 259)(249, 261)(252, 260)(253, 264)(255, 266)(262, 267)(263, 269)(265, 268)(270, 272)
e: (107, 112)
f: (58, 64)
g: (79, 90)
h: (103, 114)
m: (80, 91)(94, 102)(212, 220)(223, 231)(228, 238)(239, 249)
n1: (72, 83)(77, 88)(204, 215)(210, 221)(214, 225)(218, 229)
a1: (43, 49)
b1: (8, 16)(31, 47)(146, 155)(147, 158)(156, 169)(165, 179)
c1: (84, 89)
d1: (41, 54)(57, 66)(173, 183)(186, 195)(191, 202)(203, 213)
e1: (98, 109)
f1: (75, 86)(93, 97)(210, 218)(212, 223)(220, 231)(221, 229)
g1: (108, 119)(113, 124)(240, 251)(246, 257)(250, 261)(254, 264)
h1: (12, 23)
m1: (44, 58)(50, 64)(176, 190)(185, 197)(189, 201)(194, 205)
n2: (26, 40)(42, 53)(159, 170)(172, 182)(176, 189)(190, 201)
a2: (24, 34)
b2: (61, 73)
c2: (127, 135)
d2: (2, 4)(3, 7)(5, 10)(6, 8)(9, 18)(11, 22)(13, 16)(14, 15)(17, 28)(19, 27)(20, 24)(21, 37)(25, 36)(26, 30)(29, 43)(31, 38)(33, 48)(34, 35)(39, 51)(40, 45)(41, 44)(42, 56)(46, 59)(47, 52)(49, 63)(50, 57)(53, 60)(54, 58)(55, 62)(61, 71)(64, 66)(65, 69)(67, 74)(68, 72)(70, 81)(73, 76)(75, 84)(77, 82)(78, 85)(79, 83)(80, 87)(86, 95)(88, 90)(89, 93)(91, 98)(92, 96)(94, 105)(97, 100)(99, 108)(101, 106)(102, 109)(103, 107)(104, 111)(110, 119)(112, 114)(113, 117)(115, 122)(116, 120)(118, 129)(121, 124)(125, 128)(126, 131)(127, 130)(133, 135)(137, 138)(139, 142)(140, 146)(141, 143)(144, 152)(145, 155)(147, 149)(148, 151)(150, 162)(153, 166)(154, 165)(156, 164)(157, 161)(158, 160)(159, 171)(163, 177)(167, 179)(168, 175)(169, 178)(170, 181)(172, 184)(173, 176)(174, 180)(182, 193)(183, 190)(185, 191)(186, 189)(187, 198)(188, 192)(194, 203)(195, 201)(196, 206)(197, 202)(199, 209)(200, 204)(205, 213)(207, 217)(208, 215)(210, 216)(211, 214)(212, 222)(218, 227)(219, 225)(220, 230)(221, 226)(223, 233)(224, 228)(229, 237)(231, 241)(232, 239)(234, 240)(235, 238)(236, 246)(242, 251)(243, 249)(244, 254)(245, 250)(247, 257)(248, 252)(253, 261)(255, 264)(256, 263)(258, 260)(259, 262)(265, 269)(266, 270)(267, 268)(271, 272)
e2: (92, 103)(106, 114)(224, 232)(235, 243)(240, 250)(251, 261)
f2: (96, 101)
g2: (119, 124)
h2: (122, 131)
m2: (7, 20)(9, 35)(141, 150)(146, 165)(148, 163)(155, 179)
n3: (54, 66)
a3: (30, 45)(56, 60)(171, 181)(173, 186)(183, 195)(184, 193)
b3: (36, 51)
c3: (55, 67)(70, 78)(187, 196)(199, 207)(204, 214)(215, 225)
d3: (4, 10)(11, 21)(138, 142)(143, 151)(152, 166)(162, 177)
e3: (28, 43)(33, 49)(161, 175)(171, 184)(174, 188)(181, 193)
f3: (96, 107)(101, 112)(228, 239)(234, 245)(238, 249)(242, 253)
g3: (83, 88)
h3: (15, 36)(19, 51)(149, 164)(157, 180)(160, 178)(168, 192)
m3: (91, 102)
n4: (17, 29)(48, 63)(157, 168)(159, 172)(170, 182)(180, 192)
a4: (71, 76)
b4: (86, 97)
c4: (28, 33)
d4: (10, 21)
e4: (74, 85)
f4: (120, 130)(125, 133)(252, 263)(258, 268)(262, 270)(265, 271)
g4: (7, 9)
h4: (104, 115)(118, 126)(236, 244)(247, 255)(252, 262)(263, 270)
m4: (116, 127)(128, 135)(248, 256)(259, 266)(260, 267)(269, 272)
n5: (123, 132)(134, 136)(258, 265)(260, 269)(267, 272)(268, 271)
a5: (67, 78)
b5: (99, 110)(117, 121)(234, 242)(236, 247)(244, 255)(245, 253)
c5: (59, 71)(65, 76)(191, 203)(198, 209)(202, 213)(206, 217)
d5: (95, 100)
e5: (87, 98)(105, 109)(222, 230)(224, 235)(232, 243)(233, 241)
f5: (45, 60)
g5: (72, 77)
h5: (62, 74)(81, 85)(198, 206)(200, 211)(208, 219)(209, 217)
m5: (111, 122)(129, 131)(246, 254)(248, 259)(256, 266)(257, 264)
n6: (59, 65)
a6: (25, 39)
b6: (14, 25)(27, 39)(147, 156)(158, 169)(161, 174)(175, 188)
c6: (15, 19)
d6: (132, 136)
e6: (40, 53)
f6: (110, 121)
g6: (6, 13)(38, 52)(140, 145)(149, 160)(154, 167)(164, 178)
h6: (3, 24)(18, 34)(140, 154)(143, 162)(145, 167)(151, 177)
m6: (46, 61)(69, 73)(185, 194)(187, 199)(196, 207)(197, 205)
n7: (115, 126)
a7: (3, 18)
b7: (130, 133)
c7: (108, 113)
d7: (68, 79)(82, 90)(200, 208)(211, 219)(216, 226)(227, 237)
e7: (44, 50)
f7: (29, 63)
g7: (13, 52)
h7: (20, 35)
m7: (16, 47)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 272, 25 ]
272
-1 137 138 139 142
-2 144 137 150 141
-3 143 145 140 151
-4 143 138 162 152
-5 148 139 163 153
-6 154 149 140 164
-7 155 146 148 141
-8 165 156 146 147
-9 155 146 148 141
-10 166 177 151 142
-11 143 138 162 152
-12 144 166 152 153
-13 145 167 178 160
-14 147 158 161 175
-15 157 168 149 160
-16 155 179 158 169
-17 157 180 159 170
-18 143 145 140 151
-19 157 168 149 160
-20 165 179 150 163
-21 166 177 151 142
-22 144 137 150 141
-23 144 166 152 153
-24 154 177 167 162
-25 188 156 169 174
-26 176 190 159 172
-27 147 158 161 175
-28 181 171 161 174
-29 168 192 182 172
-30 171 183 173 184
-31 165 156 146 147
-32 137 138 139 142
-33 181 171 161 174
-34 154 177 167 162
-35 165 179 150 163
-36 178 180 192 164
-37 148 139 163 153
-38 154 149 140 164
-39 188 156 169 174
-40 189 201 170 182
-41 191 203 173 186
-42 176 190 159 172
-43 188 193 184 175
-44 176 189 194 185
-45 181 193 195 186
-46 187 185 196 197
-47 155 179 158 169
-48 157 180 159 170
-49 188 193 184 175
-50 176 189 194 185
-51 178 180 192 164
-52 145 167 178 160
-53 189 201 170 182
-54 202 213 183 195
-55 187 199 204 215
-56 171 183 173 184
-57 191 203 173 186
-58 190 201 205 197
-59 198 191 202 206
-60 181 193 195 186
-61 199 194 205 207
-62 198 209 200 208
-63 168 192 182 172
-64 190 201 205 197
-65 198 191 202 206
-66 202 213 183 195
-67 214 225 196 207
-68 200 211 216 227
-69 187 185 196 197
-70 187 199 204 215
-71 209 213 203 217
-72 210 214 204 218
-73 199 194 205 207
-74 211 206 217 219
-75 220 210 221 212
-76 209 213 203 217
-77 210 214 204 218
-78 214 225 196 207
-79 226 237 208 219
-80 212 223 228 239
-81 198 209 200 208
-82 200 211 216 227
-83 221 225 215 229
-84 222 226 216 230
-85 211 206 217 219
-86 231 223 218 229
-87 232 222 233 224
-88 221 225 215 229
-89 222 226 216 230
-90 226 237 208 219
-91 220 231 238 249
-92 224 235 240 251
-93 220 210 221 212
-94 212 223 228 239
-95 233 237 227 241
-96 242 234 238 228
-97 231 223 218 229
-98 243 235 230 241
-99 244 234 245 236
-100 233 237 227 241
-101 242 234 238 228
-102 220 231 238 249
-103 232 243 250 261
-104 236 247 252 263
-105 232 222 233 224
-106 224 235 240 251
-107 253 245 249 239
-108 254 246 250 240
-109 243 235 230 241
-110 242 253 255 247
-111 256 246 257 248
-112 253 245 249 239
-113 254 246 250 240
-114 232 243 250 261
-115 244 255 270 262
-116 269 248 259 260
-117 244 234 245 236
-118 236 247 252 263
-119 264 257 261 251
-120 265 258 262 252
-121 242 253 255 247
-122 264 254 266 259
-123 267 268 258 260
-124 264 257 261 251
-125 265 258 262 252
-126 244 255 270 262
-127 266 256 267 272
-128 269 248 259 260
-129 256 246 257 248
-130 268 270 271 263
-131 264 254 266 259
-132 265 269 271 272
-133 268 270 271 263
-134 267 268 258 260
-135 266 256 267 272
-136 265 269 271 272
-137 22 1 2 32
-138 11 1 4 32
-139 1 37 5 32
-140 3 38 6 18
-141 22 2 7 9
-142 1 10 21 32
-143 11 3 4 18
-144 22 12 23 2
-145 13 3 18 52
-146 7 8 9 31
-147 14 27 8 31
-148 37 5 7 9
-149 15 38 6 19
-150 22 2 35 20
-151 3 18 10 21
-152 11 12 23 4
-153 12 23 37 5
-154 34 24 38 6
-155 47 16 7 9
-156 25 39 8 31
-157 15 48 17 19
-158 14 47 16 27
-159 26 48 17 42
-160 13 15 19 52
-161 33 14 27 28
-162 11 34 24 4
-163 35 37 5 20
-164 36 38 6 51
-165 35 8 20 31
-166 12 23 10 21
-167 34 13 24 52
-168 15 29 19 63
-169 25 47 16 39
-170 48 17 40 53
-171 33 56 28 30
-172 26 29 63 42
-173 56 57 30 41
-174 33 25 28 39
-175 14 27 49 43
-176 44 26 50 42
-177 34 24 10 21
-178 13 36 51 52
-179 35 47 16 20
-180 36 48 17 51
-181 33 45 60 28
-182 29 40 63 53
-183 66 56 30 54
-184 56 49 30 43
-185 44 46 69 50
-186 45 57 60 41
-187 55 46 69 70
-188 25 49 39 43
-189 44 50 40 53
-190 58 26 42 64
-191 57 59 41 65
-192 36 29 51 63
-193 45 49 60 43
-194 44 50 61 73
-195 66 45 60 54
-196 67 78 46 69
-197 46 58 69 64
-198 59 81 62 65
-199 55 70 61 73
-200 68 81 82 62
-201 58 40 53 64
-202 66 59 54 65
-203 57 71 41 76
-204 55 77 70 72
-205 58 61 73 64
-206 59 74 85 65
-207 67 78 61 73
-208 79 90 81 62
-209 81 71 62 76
-210 77 93 72 75
-211 68 82 74 85
-212 80 93 94 75
-213 66 71 54 76
-214 77 67 78 72
-215 55 88 70 83
-216 89 68 82 84
-217 71 74 85 76
-218 77 72 86 97
-219 79 90 74 85
-220 91 102 93 75
-221 88 93 83 75
-222 89 105 84 87
-223 80 94 86 97
-224 92 105 106 87
-225 88 67 78 83
-226 89 79 90 84
-227 100 68 82 95
-228 101 80 94 96
-229 88 83 86 97
-230 89 84 98 109
-231 91 102 86 97
-232 103 114 105 87
-233 100 105 95 87
-234 99 101 117 96
-235 92 106 98 109
-236 99 104 117 118
-237 100 79 90 95
-238 101 91 102 96
-239 112 80 94 107
-240 113 92 106 108
-241 100 95 98 109
-242 110 121 101 96
-243 103 114 98 109
-244 99 115 126 117
-245 99 112 117 107
-246 111 113 129 108
-247 110 121 104 118
-248 111 116 128 129
-249 112 91 102 107
-250 113 103 114 108
-251 124 92 106 119
-252 125 104 118 120
-253 110 121 112 107
-254 122 113 108 131
-255 110 121 115 126
-256 111 135 127 129
-257 111 124 129 119
-258 123 134 125 120
-259 122 116 128 131
-260 123 134 116 128
-261 124 103 114 119
-262 125 115 126 120
-263 133 104 118 130
-264 122 124 119 131
-265 132 125 136 120
-266 122 135 127 131
-267 123 134 135 127
-268 133 123 134 130
-269 132 136 116 128
-270 133 115 126 130
-271 132 133 136 130
-272 132 135 136 127
0

**************