C4graphGraph forms for C4 [ 273, 10 ] = UG(ATD[273,19])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 273, 10 ] = UG(ATD[273,19]).

(I) Following is a form readable by MAGMA:

g:=Graph<273|{ {20, 21}, {218, 219}, {186, 187}, {32, 33}, {1, 3}, {268, 270}, {240, 242}, {177, 179}, {164, 166}, {1, 2}, {4, 7}, {176, 180}, {3, 6}, {2, 4}, {256, 262}, {115, 117}, {2, 5}, {5, 13}, {258, 266}, {7, 15}, {6, 14}, {167, 174}, {180, 189}, {3, 8}, {22, 29}, {7, 12}, {230, 234}, {4, 9}, {244, 249}, {18, 31}, {16, 29}, {6, 11}, {5, 10}, {34, 45}, {17, 30}, {231, 247}, {232, 248}, {14, 31}, {108, 126}, {259, 273}, {11, 24}, {15, 28}, {202, 222}, {261, 273}, {232, 252}, {12, 25}, {14, 27}, {201, 223}, {13, 26}, {8, 16}, {193, 217}, {12, 20}, {11, 19}, {10, 18}, {9, 17}, {193, 216}, {32, 58}, {267, 273}, {233, 243}, {37, 63}, {36, 62}, {33, 59}, {165, 185}, {238, 242}, {226, 254}, {198, 218}, {8, 21}, {269, 272}, {10, 23}, {134, 155}, {34, 60}, {164, 186}, {35, 61}, {9, 22}, {239, 240}, {163, 188}, {1, 33}, {76, 110}, {207, 237}, {203, 239}, {72, 109}, {198, 227}, {147, 182}, {30, 56}, {31, 57}, {129, 167}, {136, 174}, {143, 169}, {22, 49}, {64, 103}, {23, 48}, {145, 185}, {65, 104}, {156, 181}, {75, 98}, {24, 50}, {218, 240}, {207, 229}, {29, 55}, {28, 54}, {25, 51}, {138, 160}, {71, 108}, {74, 97}, {199, 235}, {13, 32}, {70, 107}, {68, 105}, {15, 34}, {26, 52}, {31, 49}, {30, 48}, {27, 53}, {69, 106}, {76, 99}, {1, 49}, {154, 171}, {204, 254}, {205, 255}, {16, 35}, {221, 238}, {211, 224}, {210, 225}, {28, 47}, {24, 43}, {20, 39}, {19, 32}, {69, 113}, {17, 36}, {153, 172}, {74, 127}, {72, 125}, {66, 119}, {64, 117}, {27, 46}, {25, 44}, {20, 33}, {19, 38}, {203, 253}, {18, 37}, {92, 107}, {73, 126}, {65, 118}, {26, 45}, {131, 180}, {132, 179}, {143, 184}, {144, 168}, {221, 228}, {194, 248}, {214, 236}, {67, 120}, {71, 124}, {21, 40}, {70, 123}, {68, 121}, {23, 42}, {128, 189}, {22, 41}, {69, 122}, {167, 231}, {186, 250}, {145, 208}, {182, 247}, {147, 210}, {149, 212}, {184, 250}, {190, 252}, {146, 209}, {178, 241}, {150, 213}, {176, 245}, {190, 251}, {182, 243}, {128, 198}, {162, 228}, {136, 207}, {177, 246}, {148, 211}, {140, 196}, {149, 221}, {129, 200}, {166, 239}, {131, 202}, {133, 204}, {135, 206}, {2, 73}, {63, 116}, {59, 112}, {130, 201}, {131, 200}, {134, 205}, {155, 215}, {183, 251}, {60, 113}, {62, 115}, {128, 205}, {129, 204}, {135, 201}, {160, 238}, {152, 214}, {139, 197}, {61, 114}, {183, 248}, {132, 203}, {133, 202}, {151, 199}, {169, 249}, {173, 255}, {175, 252}, {185, 234}, {136, 221}, {138, 223}, {146, 196}, {56, 111}, {137, 222}, {130, 218}, {172, 244}, {171, 243}, {170, 242}, {169, 241}, {168, 240}, {55, 110}, {63, 102}, {61, 100}, {175, 245}, {57, 98}, {191, 228}, {164, 255}, {62, 101}, {59, 96}, {58, 97}, {135, 220}, {148, 207}, {187, 231}, {52, 105}, {163, 254}, {54, 107}, {134, 219}, {50, 108}, {51, 109}, {53, 106}, {179, 236}, {162, 253}, {60, 99}, {146, 205}, {161, 194}, {35, 71}, {40, 77}, {58, 95}, {56, 93}, {50, 87}, {48, 85}, {42, 79}, {38, 64}, {159, 249}, {39, 65}, {41, 78}, {57, 94}, {49, 86}, {47, 72}, {16, 120}, {189, 213}, {188, 212}, {142, 230}, {4, 109}, {46, 71}, {40, 66}, {44, 70}, {41, 67}, {34, 73}, {55, 92}, {51, 88}, {39, 76}, {139, 224}, {143, 228}, {36, 72}, {137, 229}, {38, 75}, {54, 91}, {52, 89}, {140, 225}, {142, 227}, {42, 68}, {178, 220}, {43, 69}, {3, 108}, {175, 192}, {166, 201}, {53, 90}, {37, 74}, {141, 226}, {50, 66}, {51, 67}, {148, 230}, {159, 237}, {158, 236}, {152, 234}, {149, 231}, {176, 195}, {133, 241}, {144, 229}, {157, 235}, {178, 197}, {48, 73}, {43, 80}, {47, 84}, {44, 81}, {46, 83}, {138, 247}, {130, 252}, {170, 212}, {150, 232}, {151, 233}, {45, 82}, {67, 195}, {90, 219}, {61, 191}, {119, 245}, {68, 192}, {89, 220}, {70, 206}, {125, 244}, {38, 173}, {94, 210}, {47, 162}, {93, 211}, {123, 233}, {104, 251}, {127, 236}, {5, 156}, {7, 158}, {6, 157}, {115, 239}, {77, 208}, {11, 171}, {95, 254}, {113, 208}, {115, 210}, {117, 212}, {121, 216}, {122, 219}, {114, 209}, {118, 213}, {122, 217}, {63, 154}, {121, 220}, {10, 172}, {96, 198}, {112, 215}, {116, 211}, {110, 199}, {120, 209}, {88, 244}, {127, 206}, {91, 233}, {79, 250}, {26, 173}, {114, 202}, {116, 204}, {19, 170}, {111, 214}, {125, 196}, {127, 197}, {124, 192}, {126, 194}, {65, 255}, {85, 235}, {118, 200}, {124, 195}, {126, 193}, {21, 213}, {80, 145}, {29, 223}, {122, 190}, {123, 191}, {102, 163}, {120, 189}, {125, 184}, {121, 190}, {52, 253}, {124, 181}, {40, 226}, {94, 148}, {91, 145}, {90, 144}, {81, 155}, {80, 154}, {41, 227}, {95, 149}, {96, 170}, {97, 171}, {100, 174}, {101, 175}, {114, 184}, {75, 128}, {91, 144}, {119, 188}, {77, 129}, {79, 131}, {78, 130}, {82, 159}, {116, 185}, {118, 187}, {56, 246}, {93, 147}, {92, 146}, {98, 172}, {99, 173}, {8, 199}, {117, 186}, {76, 158}, {99, 177}, {80, 132}, {83, 135}, {82, 134}, {81, 133}, {55, 225}, {89, 143}, {88, 142}, {79, 153}, {78, 152}, {75, 157}, {74, 156}, {102, 176}, {103, 177}, {60, 235}, {109, 181}, {110, 182}, {111, 183}, {64, 153}, {85, 140}, {57, 227}, {87, 141}, {77, 151}, {104, 178}, {105, 179}, {12, 215}, {42, 246}, {86, 138}, {85, 137}, {84, 136}, {86, 139}, {43, 245}, {106, 180}, {9, 214}, {101, 132}, {119, 150}, {87, 181}, {66, 161}, {111, 139}, {53, 222}, {83, 191}, {97, 141}, {100, 137}, {98, 140}, {112, 159}, {17, 225}, {18, 224}, {83, 160}, {100, 151}, {104, 155}, {13, 249}, {81, 165}, {45, 217}, {103, 147}, {84, 161}, {87, 162}, {105, 156}, {107, 158}, {46, 216}, {94, 168}, {95, 169}, {96, 150}, {123, 141}, {106, 157}, {92, 166}, {93, 167}, {25, 226}, {88, 163}, {44, 209}, {89, 164}, {54, 203}, {101, 152}, {103, 154}, {112, 142}, {90, 165}, {102, 153}, {15, 258}, {14, 257}, {24, 271}, {23, 270}, {28, 263}, {27, 262}, {30, 259}, {36, 261}, {37, 262}, {59, 272}, {39, 264}, {35, 273}, {58, 264}, {62, 260}, {86, 272}, {78, 256}, {84, 260}, {82, 263}, {113, 265}, {160, 257}, {161, 258}, {165, 256}, {168, 257}, {174, 259}, {187, 267}, {188, 260}, {183, 266}, {194, 259}, {200, 265}, {196, 263}, {192, 261}, {195, 262}, {193, 269}, {197, 264}, {206, 256}, {222, 270}, {208, 258}, {223, 267}, {216, 270}, {217, 271}, {215, 266}, {234, 266}, {237, 269}, {237, 268}, {229, 263}, {230, 260}, {232, 267}, {238, 269}, {248, 272}, {224, 268}, {243, 257}, {253, 271}, {251, 265}, {241, 268}, {242, 271}, {246, 265}, {250, 261}, {247, 264} }>;

(II) A more general form is to represent the graph as the orbit of {20, 21} under the group generated by the following permutations:

a: (4, 5)(6, 8)(7, 10)(9, 13)(11, 16)(12, 18)(14, 21)(15, 23)(17, 26)(19, 29)(20, 31)(22, 32)(24, 35)(25, 37)(27, 40)(28, 42)(30, 45)(33, 49)(34, 48)(36, 52)(38, 55)(39, 57)(41, 58)(43, 61)(44, 63)(46, 66)(47, 68)(50, 71)(51, 74)(53, 77)(54, 79)(56, 82)(59, 86)(60, 85)(62, 89)(64, 92)(65, 94)(67, 97)(69, 100)(70, 102)(72, 105)(75, 110)(76, 98)(78, 95)(80, 114)(81, 116)(83, 119)(84, 121)(87, 124)(88, 127)(90, 129)(91, 131)(93, 134)(96, 138)(99, 140)(101, 143)(103, 146)(104, 148)(106, 151)(107, 153)(109, 156)(111, 159)(112, 139)(113, 137)(115, 164)(117, 166)(118, 168)(120, 171)(122, 174)(123, 176)(125, 179)(128, 182)(130, 149)(132, 184)(133, 185)(135, 188)(136, 190)(141, 195)(142, 197)(144, 200)(145, 202)(147, 205)(150, 160)(152, 169)(154, 209)(155, 211)(157, 199)(158, 172)(161, 216)(162, 192)(163, 206)(165, 204)(167, 219)(170, 223)(173, 225)(175, 228)(177, 196)(178, 230)(180, 233)(183, 237)(186, 239)(187, 240)(189, 243)(191, 245)(193, 194)(198, 247)(201, 212)(203, 250)(207, 251)(208, 222)(210, 255)(213, 257)(214, 249)(215, 224)(217, 259)(218, 231)(220, 260)(221, 252)(226, 262)(227, 264)(229, 265)(232, 238)(234, 241)(236, 244)(242, 267)(246, 263)(248, 269)(253, 261)(254, 256)(258, 270)(266, 268)(271, 273)
b: (2, 49, 3, 33)(4, 31, 8, 32)(5, 22, 6, 20)(7, 18, 16, 19)(9, 14, 21, 13)(10, 29, 11, 12)(15, 224, 35, 170)(17, 257, 40, 249)(23, 223, 24, 215)(25, 172, 55, 171)(26, 214, 27, 213)(28, 211, 61, 212)(30, 160, 66, 159)(34, 139, 71, 96)(36, 168, 77, 169)(37, 120, 38, 158)(39, 156, 41, 157)(42, 201, 43, 155)(44, 153, 92, 154)(45, 111, 46, 150)(47, 148, 100, 149)(48, 138, 50, 112)(51, 98, 110, 97)(52, 152, 53, 118)(54, 116, 114, 117)(56, 83, 119, 82)(57, 199, 58, 109)(59, 73, 86, 108)(60, 197, 124, 198)(62, 144, 129, 143)(63, 209, 64, 107)(65, 105, 78, 106)(67, 75, 76, 74)(68, 130, 69, 104)(70, 102, 146, 103)(72, 94, 151, 95)(79, 166, 80, 81)(84, 207, 174, 221)(85, 247, 87, 142)(88, 140, 182, 141)(89, 101, 90, 200)(91, 204, 184, 115)(93, 191, 188, 263)(99, 127, 195, 128)(113, 178, 192, 218)(121, 252, 122, 251)(123, 163, 196, 147)(125, 210, 233, 254)(126, 272)(131, 164, 132, 165)(133, 250, 239, 145)(134, 246, 135, 245)(137, 231, 162, 230)(161, 237, 259, 238)(167, 228, 260, 229)(173, 236, 262, 189)(175, 219, 265, 220)(176, 205, 177, 206)(179, 256, 180, 255)(181, 227, 235, 264)(183, 216, 232, 217)(185, 202, 186, 203)(187, 253, 234, 222)(193, 248)(194, 269)(208, 241, 261, 240)(225, 243, 226, 244)(242, 258, 268, 273)(266, 270, 267, 271)
c: (1, 2, 4, 7, 12, 20, 33)(3, 5, 9, 15, 25, 39, 59)(6, 10, 17, 28, 44, 65, 96)(8, 13, 22, 34, 51, 76, 112)(11, 18, 30, 47, 70, 104, 150)(14, 23, 36, 54, 81, 118, 170)(16, 26, 41, 60, 88, 110, 159)(19, 31, 48, 72, 107, 155, 213)(21, 32, 49, 73, 109, 158, 215)(24, 37, 56, 84, 123, 178, 232)(27, 42, 62, 91, 133, 187, 242)(29, 45, 67, 99, 142, 199, 249)(35, 52, 78, 113, 163, 182, 237)(38, 57, 85, 125, 92, 134, 189)(40, 58, 86, 126, 181, 236, 266)(43, 63, 93, 136, 191, 220, 252)(46, 68, 101, 145, 204, 231, 238)(50, 74, 111, 161, 141, 197, 248)(53, 79, 115, 144, 202, 186, 240)(55, 82, 120, 173, 227, 235, 244)(61, 89, 130, 69, 102, 147, 207)(64, 94, 137, 184, 166, 219, 180)(66, 97, 139, 194, 87, 127, 183)(71, 105, 152, 208, 254, 247, 269)(75, 98, 140, 196, 146, 205, 128)(77, 95, 138, 193, 124, 179, 234)(80, 116, 167, 221, 83, 121, 175)(90, 131, 117, 168, 222, 250, 239)(100, 143, 201, 122, 176, 103, 148)(106, 153, 210, 229, 114, 164, 218)(108, 156, 214, 258, 226, 264, 272)(119, 171, 224, 259, 162, 206, 251)(129, 149, 160, 216, 192, 132, 185)(135, 190, 245, 154, 211, 174, 228)(151, 169, 223, 217, 195, 177, 230)(157, 172, 225, 263, 209, 255, 198)(165, 200, 212, 257, 270, 261, 203)(188, 243, 268, 273, 253, 256, 265)(233, 241, 267, 271, 262, 246, 260)
d: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18, 29)(20, 32)(22, 31)(23, 35)(25, 38)(26, 40)(28, 43)(30, 46)(34, 50)(36, 53)(37, 55)(39, 58)(41, 57)(42, 61)(44, 64)(45, 66)(47, 69)(48, 71)(51, 75)(52, 77)(54, 80)(56, 83)(60, 87)(62, 90)(63, 92)(65, 95)(67, 98)(68, 100)(70, 103)(72, 106)(73, 108)(74, 110)(76, 97)(78, 94)(79, 114)(81, 117)(82, 119)(84, 122)(85, 124)(88, 128)(89, 129)(91, 132)(93, 135)(96, 112)(99, 141)(101, 144)(102, 146)(104, 149)(105, 151)(107, 154)(109, 157)(111, 160)(113, 162)(115, 165)(116, 166)(118, 169)(120, 172)(121, 174)(123, 177)(125, 180)(127, 182)(130, 148)(131, 184)(133, 186)(134, 188)(136, 190)(137, 192)(138, 139)(140, 195)(142, 198)(143, 200)(145, 203)(147, 206)(150, 159)(152, 168)(153, 209)(155, 212)(156, 199)(158, 171)(161, 217)(163, 205)(164, 204)(167, 220)(170, 215)(173, 226)(175, 229)(176, 196)(178, 231)(179, 233)(181, 235)(183, 238)(185, 239)(187, 241)(189, 244)(191, 246)(193, 194)(197, 247)(201, 211)(202, 250)(207, 252)(208, 253)(210, 256)(213, 249)(214, 257)(216, 259)(218, 230)(219, 260)(221, 251)(222, 261)(223, 224)(225, 262)(228, 265)(232, 237)(234, 240)(236, 243)(242, 266)(245, 263)(248, 269)(254, 255)(258, 271)(267, 268)(270, 273)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 273, 10 ]
273
-1 33 2 3 49
-2 1 4 5 73
-3 1 6 8 108
-4 2 7 9 109
-5 2 13 156 10
-6 11 3 14 157
-7 12 4 15 158
-8 199 3 16 21
-9 22 4 214 17
-10 23 5 18 172
-11 24 6 171 19
-12 25 215 7 20
-13 26 5 249 32
-14 257 27 6 31
-15 34 258 28 7
-16 35 29 8 120
-17 36 225 30 9
-18 37 224 31 10
-19 11 38 170 32
-20 33 12 39 21
-21 213 40 8 20
-22 49 29 41 9
-23 48 270 42 10
-24 11 50 271 43
-25 44 12 226 51
-26 45 13 52 173
-27 46 14 53 262
-28 47 15 54 263
-29 22 55 223 16
-30 56 48 17 259
-31 57 14 49 18
-32 33 13 58 19
-33 1 59 20 32
-34 45 15 60 73
-35 16 71 61 273
-36 17 72 62 261
-37 18 63 74 262
-38 19 173 64 75
-39 264 20 65 76
-40 66 77 226 21
-41 22 67 78 227
-42 23 68 79 246
-43 24 69 80 245
-44 209 25 70 81
-45 34 26 82 217
-46 27 71 83 216
-47 28 72 84 162
-48 23 73 30 85
-49 22 1 31 86
-50 66 24 108 87
-51 88 67 25 109
-52 253 89 26 105
-53 90 222 27 106
-54 91 203 28 107
-55 110 92 225 29
-56 111 246 93 30
-57 94 227 31 98
-58 264 95 97 32
-59 33 112 96 272
-60 99 34 113 235
-61 100 35 114 191
-62 101 36 115 260
-63 154 102 37 116
-64 103 38 117 153
-65 255 104 39 118
-66 50 40 161 119
-67 51 41 195 120
-68 121 192 105 42
-69 122 113 106 43
-70 44 123 107 206
-71 35 46 124 108
-72 36 47 125 109
-73 34 2 48 126
-74 156 37 127 97
-75 157 38 128 98
-76 99 110 158 39
-77 40 129 151 208
-78 256 41 130 152
-79 250 42 131 153
-80 132 154 145 43
-81 44 165 133 155
-82 45 134 159 263
-83 46 135 191 160
-84 47 136 161 260
-85 48 235 137 140
-86 49 138 139 272
-87 181 50 162 141
-88 244 51 163 142
-89 143 220 52 164
-90 165 144 53 219
-91 144 145 233 54
-92 55 166 146 107
-93 56 167 211 147
-94 210 57 168 148
-95 254 58 169 149
-96 198 59 170 150
-97 58 171 74 141
-98 57 172 140 75
-99 177 60 173 76
-100 137 61 151 174
-101 132 62 152 175
-102 176 63 163 153
-103 154 177 147 64
-104 155 178 251 65
-105 68 156 179 52
-106 69 157 180 53
-107 70 92 158 54
-108 3 71 126 50
-109 4 181 72 51
-110 55 199 182 76
-111 56 214 139 183
-112 59 159 215 142
-113 265 69 60 208
-114 209 202 61 184
-115 210 62 117 239
-116 211 204 63 185
-117 212 115 64 186
-118 187 200 213 65
-119 66 188 245 150
-120 209 67 189 16
-121 220 68 190 216
-122 69 190 217 219
-123 233 70 191 141
-124 71 181 192 195
-125 244 72 184 196
-126 193 73 194 108
-127 236 74 206 197
-128 198 189 205 75
-129 77 167 200 204
-130 78 201 218 252
-131 79 200 180 202
-132 101 80 179 203
-133 81 202 204 241
-134 155 82 205 219
-135 220 201 83 206
-136 221 84 174 207
-137 100 222 85 229
-138 223 247 160 86
-139 111 224 86 197
-140 225 85 196 98
-141 123 226 97 87
-142 88 112 227 230
-143 89 169 184 228
-144 90 91 168 229
-145 80 91 185 208
-146 209 92 205 196
-147 210 103 93 182
-148 211 94 207 230
-149 231 221 212 95
-150 232 213 96 119
-151 77 100 199 233
-152 78 101 234 214
-153 79 102 172 64
-154 80 103 171 63
-155 134 81 104 215
-156 5 181 105 74
-157 235 6 106 75
-158 236 7 107 76
-159 112 82 237 249
-160 257 83 138 238
-161 66 258 84 194
-162 253 47 228 87
-163 88 188 254 102
-164 89 166 255 186
-165 90 256 81 185
-166 201 92 239 164
-167 231 93 129 174
-168 144 257 94 240
-169 143 95 249 241
-170 242 212 19 96
-171 11 154 243 97
-172 244 10 98 153
-173 99 255 26 38
-174 100 167 136 259
-175 101 245 192 252
-176 102 245 180 195
-177 99 179 103 246
-178 220 104 197 241
-179 132 177 236 105
-180 176 189 106 131
-181 156 124 87 109
-182 110 243 147 247
-183 111 266 248 251
-184 143 114 125 250
-185 165 145 234 116
-186 187 117 250 164
-187 231 267 118 186
-188 212 260 119 163
-189 180 213 128 120
-190 121 122 251 252
-191 123 61 83 228
-192 68 124 261 175
-193 126 269 216 217
-194 126 248 259 161
-195 176 67 124 262
-196 146 125 140 263
-197 264 178 127 139
-198 128 227 96 218
-199 110 235 8 151
-200 265 118 129 131
-201 166 135 223 130
-202 133 222 114 131
-203 132 253 239 54
-204 133 254 116 129
-205 134 255 146 128
-206 135 256 70 127
-207 136 148 237 229
-208 77 145 113 258
-209 44 146 114 120
-210 147 115 225 94
-211 224 93 148 116
-212 188 170 149 117
-213 189 150 118 21
-214 111 236 9 152
-215 12 155 112 266
-216 121 46 193 270
-217 45 122 193 271
-218 198 130 240 219
-219 122 90 134 218
-220 121 89 178 135
-221 136 149 238 228
-222 202 137 270 53
-223 201 267 138 29
-224 211 268 18 139
-225 55 210 17 140
-226 254 25 40 141
-227 198 57 41 142
-228 143 221 191 162
-229 144 137 207 263
-230 234 148 260 142
-231 187 167 247 149
-232 267 248 150 252
-233 243 123 91 151
-234 266 152 185 230
-235 199 157 60 85
-236 179 158 214 127
-237 268 159 269 207
-238 242 221 269 160
-239 166 115 203 240
-240 242 168 239 218
-241 133 178 169 268
-242 170 238 271 240
-243 233 257 171 182
-244 88 125 172 249
-245 176 119 43 175
-246 56 177 265 42
-247 231 264 138 182
-248 232 183 194 272
-249 13 244 169 159
-250 79 184 261 186
-251 265 190 104 183
-252 232 190 130 175
-253 203 271 52 162
-254 204 226 95 163
-255 205 173 65 164
-256 165 78 206 262
-257 243 14 168 160
-258 266 15 161 208
-259 194 30 174 273
-260 188 62 84 230
-261 36 192 250 273
-262 256 37 27 195
-263 82 28 196 229
-264 58 247 39 197
-265 200 113 246 251
-266 234 258 215 183
-267 187 232 223 273
-268 224 237 270 241
-269 193 237 238 272
-270 23 222 268 216
-271 242 253 24 217
-272 59 269 248 86
-273 35 267 259 261
0

**************