[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 273, 14 ] =
UG(Rmap(546,86){7,4|14}_14).
(I) Following is a form readable by MAGMA:
g:=Graph<273|{ {112, 113}, {230, 231}, {208, 209}, {134, 135}, {1, 3}, {1, 2},
{97, 98}, {1, 5}, {9, 13}, {2, 7}, {3, 6}, {2, 4}, {266, 268}, {264, 270}, {178,
180}, {8, 15}, {267, 268}, {3, 11}, {257, 265}, {1, 8}, {260, 269}, {7, 14},
{192, 202}, {261, 271}, {260, 270}, {242, 248}, {6, 13}, {226, 233}, {16, 28},
{257, 269}, {18, 30}, {17, 29}, {116, 120}, {149, 153}, {4, 9}, {162, 175}, {2,
12}, {258, 268}, {178, 188}, {5, 10}, {20, 27}, {66, 82}, {233, 249}, {3, 18},
{233, 248}, {230, 247}, {6, 23}, {66, 80}, {259, 273}, {12, 31}, {4, 16}, {15,
27}, {5, 17}, {110, 122}, {131, 151}, {171, 191}, {239, 250}, {261, 272}, {104,
126}, {32, 56}, {37, 61}, {36, 60}, {35, 59}, {34, 58}, {33, 57}, {129, 153},
{10, 19}, {12, 21}, {129, 155}, {267, 273}, {266, 272}, {197, 223}, {172, 183},
{166, 186}, {4, 25}, {235, 246}, {14, 19}, {160, 189}, {8, 22}, {271, 273},
{234, 244}, {174, 176}, {41, 55}, {40, 54}, {167, 185}, {5, 26}, {228, 251},
{11, 20}, {7, 24}, {139, 148}, {13, 45}, {214, 246}, {205, 237}, {17, 49}, {16,
48}, {15, 47}, {14, 46}, {141, 173}, {75, 106}, {203, 234}, {195, 226}, {7, 36},
{84, 119}, {142, 173}, {79, 107}, {89, 125}, {6, 35}, {216, 253}, {192, 229},
{85, 112}, {84, 113}, {26, 63}, {153, 188}, {196, 226}, {217, 255}, {212, 242},
{25, 62}, {217, 254}, {214, 241}, {154, 189}, {30, 54}, {31, 55}, {135, 175},
{9, 32}, {220, 245}, {11, 34}, {145, 187}, {202, 224}, {10, 33}, {219, 240},
{94, 117}, {143, 164}, {94, 114}, {8, 37}, {92, 113}, {93, 115}, {158, 177},
{64, 112}, {65, 113}, {91, 107}, {133, 181}, {22, 39}, {203, 250}, {198, 247},
{75, 122}, {73, 120}, {71, 118}, {70, 119}, {69, 116}, {67, 114}, {26, 43}, {24,
41}, {211, 225}, {21, 38}, {203, 248}, {76, 127}, {74, 121}, {70, 117}, {25,
42}, {86, 98}, {207, 251}, {204, 249}, {209, 228}, {85, 99}, {68, 115}, {215,
224}, {204, 251}, {152, 160}, {10, 51}, {79, 118}, {12, 53}, {28, 38}, {196,
254}, {29, 39}, {9, 50}, {198, 253}, {197, 254}, {138, 177}, {69, 121}, {202,
246}, {83, 111}, {82, 110}, {81, 109}, {80, 108}, {140, 176}, {200, 245}, {211,
238}, {210, 239}, {206, 243}, {18, 44}, {195, 253}, {11, 52}, {72, 119}, {23,
40}, {161, 225}, {28, 93}, {34, 99}, {32, 97}, {30, 95}, {134, 199}, {140, 205},
{159, 222}, {161, 224}, {131, 193}, {157, 223}, {29, 94}, {33, 98}, {144, 212},
{164, 225}, {132, 194}, {185, 255}, {174, 232}, {168, 238}, {15, 72}, {27, 92},
{165, 226}, {19, 91}, {171, 227}, {14, 71}, {184, 241}, {143, 198}, {52, 126},
{152, 210}, {136, 195}, {142, 197}, {13, 64}, {180, 249}, {137, 196}, {138,
199}, {50, 124}, {53, 123}, {51, 125}, {59, 107}, {184, 232}, {63, 111}, {62,
110}, {61, 109}, {60, 108}, {182, 231}, {19, 65}, {23, 69}, {22, 68}, {181,
230}, {148, 193}, {181, 224}, {174, 251}, {20, 66}, {21, 67}, {170, 252}, {144,
199}, {162, 250}, {16, 73}, {18, 75}, {145, 200}, {147, 202}, {46, 116}, {178,
232}, {17, 74}, {146, 201}, {155, 192}, {138, 215}, {139, 214}, {24, 70}, {179,
237}, {132, 218}, {161, 255}, {150, 201}, {180, 213}, {44, 78}, {53, 87}, {52,
86}, {49, 83}, {48, 82}, {45, 79}, {158, 252}, {128, 227}, {27, 127}, {186,
222}, {185, 221}, {57, 93}, {128, 229}, {42, 76}, {179, 213}, {56, 94}, {51,
85}, {50, 84}, {43, 77}, {139, 237}, {58, 93}, {134, 225}, {169, 193}, {169,
195}, {162, 206}, {154, 247}, {20, 100}, {26, 106}, {25, 105}, {24, 104}, {23,
103}, {22, 102}, {21, 101}, {187, 201}, {177, 194}, {56, 76}, {58, 78}, {57,
77}, {150, 227}, {142, 249}, {143, 248}, {146, 235}, {183, 206}, {163, 218},
{35, 89}, {147, 233}, {166, 220}, {168, 210}, {170, 208}, {145, 234}, {172,
215}, {163, 216}, {155, 231}, {37, 88}, {160, 221}, {36, 90}, {47, 81}, {46,
80}, {31, 96}, {189, 194}, {133, 250}, {156, 227}, {38, 166}, {39, 167}, {89,
217}, {111, 238}, {88, 218}, {61, 190}, {87, 212}, {43, 175}, {115, 247}, {57,
188}, {86, 211}, {84, 209}, {77, 200}, {62, 184}, {48, 183}, {85, 210}, {63,
183}, {124, 244}, {49, 184}, {51, 186}, {101, 236}, {122, 240}, {123, 241}, {50,
185}, {88, 213}, {81, 223}, {52, 187}, {54, 166}, {59, 170}, {61, 172}, {103,
246}, {30, 140}, {63, 173}, {31, 141}, {119, 229}, {102, 245}, {127, 236}, {72,
220}, {74, 222}, {73, 221}, {96, 244}, {90, 207}, {28, 138}, {65, 215}, {64,
214}, {29, 139}, {91, 205}, {100, 242}, {60, 171}, {120, 239}, {92, 196}, {104,
240}, {118, 238}, {40, 177}, {47, 182}, {45, 180}, {42, 176}, {62, 164}, {41,
178}, {67, 216}, {46, 181}, {71, 219}, {68, 217}, {77, 208}, {121, 228}, {54,
168}, {55, 169}, {92, 194}, {44, 179}, {78, 209}, {69, 218}, {105, 203}, {56,
156}, {127, 219}, {38, 128}, {53, 147}, {39, 129}, {106, 204}, {111, 201}, {47,
135}, {103, 207}, {42, 131}, {44, 133}, {91, 242}, {102, 207}, {40, 130}, {100,
206}, {41, 130}, {45, 134}, {95, 243}, {109, 193}, {114, 223}, {32, 142}, {33,
143}, {43, 132}, {34, 144}, {59, 137}, {35, 145}, {117, 198}, {83, 230}, {36,
146}, {37, 147}, {48, 136}, {49, 137}, {60, 135}, {108, 208}, {126, 192}, {87,
151}, {86, 148}, {87, 149}, {90, 152}, {124, 190}, {125, 191}, {80, 148}, {110,
170}, {120, 188}, {123, 191}, {95, 153}, {123, 189}, {90, 144}, {106, 160},
{108, 167}, {125, 182}, {79, 129}, {89, 151}, {88, 150}, {82, 157}, {78, 159},
{83, 130}, {81, 130}, {66, 154}, {112, 169}, {126, 165}, {98, 190}, {97, 191},
{124, 163}, {101, 133}, {95, 190}, {64, 162}, {116, 151}, {71, 163}, {76, 168},
{115, 150}, {121, 156}, {114, 149}, {75, 161}, {107, 128}, {67, 175}, {73, 165},
{72, 164}, {96, 140}, {101, 137}, {117, 152}, {99, 141}, {102, 136}, {65, 174},
{74, 165}, {122, 149}, {109, 159}, {68, 176}, {70, 179}, {104, 158}, {105, 159},
{99, 155}, {100, 156}, {96, 154}, {103, 157}, {105, 146}, {118, 136}, {55, 200},
{58, 197}, {97, 158}, {132, 261}, {131, 260}, {141, 258}, {157, 259}, {171,
267}, {172, 268}, {167, 258}, {173, 263}, {182, 262}, {186, 256}, {187, 257},
{199, 260}, {212, 272}, {204, 262}, {205, 263}, {222, 266}, {220, 265}, {213,
269}, {216, 256}, {211, 271}, {221, 257}, {219, 262}, {236, 269}, {232, 267},
{245, 272}, {229, 259}, {237, 261}, {235, 256}, {228, 264}, {235, 263}, {234,
262}, {236, 258}, {231, 264}, {254, 271}, {252, 270}, {253, 270}, {244, 259},
{241, 265}, {240, 266}, {243, 265}, {243, 264}, {252, 263}, {239, 273}, {255,
256} }>;
(II) A more general form is to represent the graph as the orbit of {112, 113}
under the group generated by the following permutations:
a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 13)(10, 15)(12, 18)(14, 20)(16, 23)(17, 22)(19,
27)(21, 30)(24, 34)(25, 35)(26, 37)(28, 40)(29, 39)(31, 44)(32, 45)(33, 47)(36,
52)(38, 54)(41, 58)(42, 59)(43, 61)(46, 66)(48, 69)(49, 68)(50, 64)(51, 72)(53,
75)(55, 78)(56, 79)(57, 81)(60, 86)(62, 89)(63, 88)(65, 92)(67, 95)(70, 99)(71,
100)(73, 103)(74, 102)(76, 107)(77, 109)(82, 116)(83, 115)(84, 112)(85, 119)(87,
122)(90, 126)(91, 127)(93, 130)(94, 129)(96, 133)(97, 134)(98, 135)(101,
140)(104, 144)(105, 145)(106, 147)(108, 148)(110, 151)(111, 150)(114, 153)(117,
155)(118, 156)(120, 157)(121, 136)(123, 161)(124, 162)(125, 164)(128, 168)(131,
170)(132, 172)(137, 176)(138, 177)(139, 167)(141, 179)(142, 180)(143, 182)(146,
187)(152, 192)(154, 181)(158, 199)(159, 200)(160, 202)(163, 206)(165, 207)(169,
209)(171, 211)(173, 213)(174, 196)(175, 190)(178, 197)(183, 218)(184, 217)(185,
214)(186, 220)(188, 223)(189, 224)(191, 225)(193, 208)(194, 215)(195, 228)(198,
231)(203, 234)(204, 233)(205, 236)(210, 229)(212, 240)(216, 243)(219, 242)(221,
246)(222, 245)(226, 251)(227, 238)(230, 247)(232, 254)(235, 257)(237, 258)(239,
259)(241, 255)(244, 250)(248, 262)(252, 260)(253, 264)(256, 265)(261, 268)(263,
269)(266, 272)(267, 271) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (5, 8)(7, 12)(10, 37)(11, 18)(14, 53)(15, 26)(16, 25)(17, 22)(19, 147)(20,
75)(21, 36)(23, 35)(24, 31)(27, 106)(28, 105)(29, 39)(30, 52)(32, 50)(33,
61)(34, 44)(38, 146)(40, 145)(41, 55)(42, 73)(43, 47)(45, 64)(46, 87)(48,
62)(49, 102)(51, 88)(54, 187)(56, 185)(57, 109)(58, 78)(59, 103)(60, 67)(63,
72)(65, 233)(66, 122)(68, 74)(69, 89)(70, 141)(71, 123)(76, 221)(77, 81)(79,
214)(80, 149)(82, 110)(83, 245)(84, 142)(85, 213)(86, 95)(90, 101)(91, 202)(92,
204)(93, 159)(94, 167)(96, 104)(97, 124)(98, 190)(99, 179)(100, 161)(107,
246)(108, 114)(111, 220)(112, 180)(113, 249)(115, 222)(116, 151)(117, 258)(118,
241)(119, 173)(120, 131)(121, 217)(125, 218)(126, 140)(127, 160)(128, 235)(129,
139)(130, 200)(132, 182)(133, 144)(134, 162)(135, 175)(136, 184)(137, 207)(138,
203)(143, 172)(148, 153)(150, 186)(152, 236)(154, 240)(155, 237)(156, 255)(157,
170)(158, 244)(163, 191)(164, 183)(165, 176)(166, 201)(168, 257)(169, 178)(171,
216)(174, 226)(177, 234)(181, 212)(188, 193)(189, 219)(192, 205)(194, 262)(195,
232)(196, 251)(197, 209)(198, 268)(199, 250)(206, 225)(208, 223)(210, 269)(211,
243)(215, 248)(224, 242)(227, 256)(228, 254)(229, 263)(230, 272)(231, 261)(238,
265)(239, 260)(247, 266)(252, 259)(253, 267)(264, 271)(270, 273)
c: (1, 2)(3, 4)(5, 7)(6, 9)(8, 12)(10, 14)(11, 16)(15, 21)(17, 24)(18, 25)(20,
28)(22, 31)(23, 32)(26, 36)(27, 38)(29, 41)(30, 42)(33, 46)(34, 48)(35, 50)(37,
53)(39, 55)(40, 56)(43, 60)(44, 62)(45, 64)(47, 67)(49, 70)(51, 71)(52, 73)(54,
76)(57, 80)(58, 82)(59, 84)(61, 87)(63, 90)(65, 91)(66, 93)(68, 96)(69, 97)(72,
101)(74, 104)(75, 105)(77, 108)(78, 110)(79, 112)(81, 114)(83, 117)(85, 118)(86,
120)(88, 123)(89, 124)(92, 128)(94, 130)(95, 131)(98, 116)(99, 136)(100,
138)(102, 141)(103, 142)(106, 146)(107, 113)(109, 149)(111, 152)(115, 154)(119,
137)(121, 158)(122, 159)(125, 163)(126, 165)(127, 166)(129, 169)(132, 171)(133,
164)(134, 162)(135, 175)(139, 178)(140, 176)(143, 181)(144, 183)(145, 185)(148,
188)(150, 189)(151, 190)(153, 193)(155, 195)(156, 177)(157, 197)(160, 201)(161,
203)(167, 200)(170, 209)(172, 212)(173, 207)(174, 205)(179, 184)(180, 214)(182,
216)(186, 219)(187, 221)(191, 218)(192, 226)(194, 227)(196, 229)(198, 230)(199,
206)(202, 233)(204, 235)(210, 238)(211, 239)(213, 241)(215, 242)(217, 244)(220,
236)(222, 240)(224, 248)(225, 250)(228, 252)(231, 253)(232, 237)(234, 255)(243,
260)(245, 258)(246, 249)(251, 263)(254, 259)(256, 262)(261, 267)(264, 270)(265,
269)(268, 272)(271, 273)
d: (3, 5)(4, 7)(6, 10)(9, 14)(11, 17)(13, 19)(15, 22)(16, 24)(18, 26)(20,
29)(21, 31)(23, 33)(25, 36)(27, 39)(28, 41)(30, 43)(32, 46)(34, 49)(35, 51)(38,
55)(40, 57)(42, 60)(44, 63)(45, 65)(47, 68)(48, 70)(50, 71)(52, 74)(54, 77)(56,
80)(58, 83)(59, 85)(61, 88)(62, 90)(64, 91)(66, 94)(67, 96)(69, 98)(72, 102)(73,
104)(75, 106)(76, 108)(78, 111)(79, 113)(81, 115)(82, 117)(84, 118)(86, 121)(87,
123)(89, 125)(92, 129)(93, 130)(95, 132)(97, 116)(99, 137)(100, 139)(101,
141)(103, 143)(105, 146)(107, 112)(109, 150)(110, 152)(114, 154)(119, 136)(120,
158)(122, 160)(124, 163)(126, 165)(127, 167)(128, 169)(131, 171)(133, 173)(134,
174)(135, 176)(138, 178)(140, 175)(142, 181)(144, 184)(145, 186)(148, 156)(149,
189)(151, 191)(153, 194)(155, 196)(157, 198)(159, 201)(161, 204)(162, 205)(164,
207)(166, 200)(168, 208)(170, 210)(172, 213)(177, 188)(179, 183)(180, 215)(182,
217)(185, 219)(187, 222)(190, 218)(192, 226)(193, 227)(195, 229)(197, 230)(199,
232)(202, 233)(203, 235)(206, 237)(209, 238)(211, 228)(212, 241)(214, 242)(216,
244)(220, 245)(221, 240)(223, 247)(224, 249)(225, 251)(231, 254)(234, 256)(236,
258)(239, 252)(243, 261)(246, 248)(250, 263)(253, 259)(255, 262)(257, 266)(260,
267)(264, 271)(265, 272)(268, 269)(270, 273)
C4[ 273, 14 ]
273
-1 2 3 5 8
-2 1 12 4 7
-3 11 1 6 18
-4 2 25 16 9
-5 1 26 17 10
-6 23 13 35 3
-7 2 24 14 36
-8 22 1 15 37
-9 13 4 50 32
-10 33 5 51 19
-11 34 3 52 20
-12 2 31 53 21
-13 45 6 9 64
-14 46 71 7 19
-15 47 27 72 8
-16 4 48 28 73
-17 5 49 29 74
-18 44 3 30 75
-19 14 91 10 65
-20 11 66 100 27
-21 12 67 101 38
-22 68 102 39 8
-23 69 103 6 40
-24 70 104 7 41
-25 4 105 62 42
-26 5 106 63 43
-27 15 92 127 20
-28 16 38 93 138
-29 17 39 94 139
-30 18 95 140 54
-31 55 12 96 141
-32 56 9 97 142
-33 143 57 10 98
-34 11 99 144 58
-35 89 145 59 6
-36 90 146 60 7
-37 88 147 61 8
-38 166 28 128 21
-39 22 167 29 129
-40 23 177 130 54
-41 55 24 178 130
-42 176 25 76 131
-43 77 132 26 175
-44 78 133 179 18
-45 13 79 134 180
-46 14 80 181 116
-47 135 15 81 182
-48 136 16 82 183
-49 137 17 83 184
-50 124 84 9 185
-51 125 85 10 186
-52 11 187 126 86
-53 12 123 147 87
-54 166 168 40 30
-55 200 169 41 31
-56 156 94 32 76
-57 33 77 188 93
-58 34 78 93 197
-59 35 137 170 107
-60 36 135 171 108
-61 190 37 172 109
-62 110 25 184 164
-63 111 26 183 173
-64 13 112 214 162
-65 113 215 19 174
-66 154 80 82 20
-67 114 216 21 175
-68 22 176 115 217
-69 121 23 116 218
-70 24 179 117 119
-71 14 118 163 219
-72 220 15 119 164
-73 165 221 16 120
-74 121 165 222 17
-75 122 18 106 161
-76 56 168 127 42
-77 57 200 43 208
-78 44 209 58 159
-79 45 107 118 129
-80 66 46 148 108
-81 47 223 130 109
-82 66 110 157 48
-83 111 49 130 230
-84 209 113 50 119
-85 99 210 112 51
-86 211 148 52 98
-87 212 149 151 53
-88 37 213 150 218
-89 35 125 151 217
-90 144 36 152 207
-91 242 205 19 107
-92 113 27 194 196
-93 57 58 115 28
-94 56 114 29 117
-95 243 190 30 153
-96 154 244 140 31
-97 158 191 32 98
-98 33 190 86 97
-99 34 155 85 141
-100 242 156 206 20
-101 133 137 236 21
-102 22 245 136 207
-103 23 157 246 207
-104 24 158 126 240
-105 25 146 159 203
-106 26 160 204 75
-107 79 91 59 128
-108 167 80 60 208
-109 81 159 61 193
-110 122 82 170 62
-111 201 83 238 63
-112 113 169 85 64
-113 112 92 84 65
-114 67 223 94 149
-115 68 93 247 150
-116 46 69 151 120
-117 198 70 94 152
-118 79 136 71 238
-119 70 72 84 229
-120 188 116 73 239
-121 156 69 74 228
-122 110 149 75 240
-123 189 191 53 241
-124 244 190 50 163
-125 89 191 182 51
-126 165 104 192 52
-127 27 236 76 219
-128 38 227 107 229
-129 155 79 39 153
-130 81 83 40 41
-131 193 260 151 42
-132 194 261 218 43
-133 44 101 181 250
-134 45 199 135 225
-135 134 47 60 175
-136 102 48 118 195
-137 101 59 49 196
-138 177 199 28 215
-139 148 214 237 29
-140 176 205 30 96
-141 99 258 173 31
-142 249 173 32 197
-143 33 198 248 164
-144 34 199 90 212
-145 187 35 200 234
-146 36 201 235 105
-147 233 37 202 53
-148 80 193 139 86
-149 122 114 87 153
-150 88 201 115 227
-151 89 116 87 131
-152 210 90 160 117
-153 188 149 95 129
-154 66 189 247 96
-155 99 231 192 129
-156 121 56 100 227
-157 223 103 82 259
-158 177 104 97 252
-159 78 222 105 109
-160 221 189 106 152
-161 255 224 225 75
-162 206 250 64 175
-163 124 71 216 218
-164 143 225 72 62
-165 126 226 73 74
-166 220 38 54 186
-167 258 39 108 185
-168 210 238 54 76
-169 55 112 193 195
-170 110 59 208 252
-171 267 191 60 227
-172 268 61 215 183
-173 63 141 142 263
-174 176 232 251 65
-175 67 135 162 43
-176 68 140 42 174
-177 158 138 40 194
-178 188 232 180 41
-179 44 70 213 237
-180 45 178 213 249
-181 133 46 224 230
-182 231 47 125 262
-183 48 172 63 206
-184 232 49 62 241
-185 221 167 255 50
-186 166 222 256 51
-187 145 201 257 52
-188 57 178 120 153
-189 154 123 160 194
-190 124 61 95 98
-191 123 125 171 97
-192 155 202 126 229
-193 169 148 109 131
-194 132 177 189 92
-195 253 136 169 226
-196 254 92 137 226
-197 254 58 223 142
-198 143 253 247 117
-199 144 134 138 260
-200 55 77 145 245
-201 187 111 146 150
-202 147 224 246 192
-203 234 105 248 250
-204 106 249 251 262
-205 91 237 140 263
-206 100 243 183 162
-207 90 102 103 251
-208 77 209 170 108
-209 78 84 228 208
-210 168 85 239 152
-211 225 238 271 86
-212 242 144 272 87
-213 88 179 180 269
-214 246 139 64 241
-215 224 138 172 65
-216 253 67 256 163
-217 89 254 68 255
-218 88 132 69 163
-219 71 127 240 262
-220 166 265 245 72
-221 257 160 73 185
-222 266 159 74 186
-223 157 81 114 197
-224 202 181 215 161
-225 134 211 161 164
-226 165 233 195 196
-227 156 171 128 150
-228 121 209 264 251
-229 192 259 128 119
-230 231 181 247 83
-231 264 155 182 230
-232 178 267 184 174
-233 147 226 248 249
-234 145 244 203 262
-235 146 256 246 263
-236 101 258 269 127
-237 179 139 205 261
-238 111 211 168 118
-239 210 250 273 120
-240 122 266 104 219
-241 265 123 214 184
-242 100 91 212 248
-243 264 265 95 206
-244 124 234 259 96
-245 220 200 102 272
-246 103 202 235 214
-247 154 198 115 230
-248 143 242 233 203
-249 233 180 204 142
-250 133 203 162 239
-251 204 228 174 207
-252 158 170 270 263
-253 198 270 216 195
-254 271 217 196 197
-255 256 161 217 185
-256 255 235 216 186
-257 187 221 265 269
-258 167 268 236 141
-259 244 157 229 273
-260 199 269 270 131
-261 132 237 271 272
-262 234 182 204 219
-263 235 205 173 252
-264 231 243 270 228
-265 220 243 257 241
-266 222 268 272 240
-267 232 268 171 273
-268 266 267 258 172
-269 213 257 236 260
-270 253 264 260 252
-271 254 211 261 273
-272 266 212 245 261
-273 267 259 271 239
0