[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 273, 16 ] =
MG(Rmap(273,23){6,7|13}_13).
(I) Following is a form readable by MAGMA:
g:=Graph<273|{ {162, 163}, {236, 237}, {1, 3}, {241, 243}, {49, 51}, {1, 2},
{204, 207}, {120, 124}, {250, 254}, {1, 4}, {234, 239}, {73, 76}, {8, 13}, {2,
7}, {265, 271}, {1, 6}, {257, 262}, {67, 68}, {2, 5}, {137, 142}, {2, 10}, {259,
267}, {19, 27}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {263, 270}, {118,
124}, {145, 155}, {3, 8}, {103, 107}, {257, 269}, {113, 125}, {119, 123}, {4,
9}, {242, 255}, {181, 187}, {17, 30}, {35, 50}, {204, 221}, {3, 16}, {227, 240},
{194, 209}, {34, 49}, {7, 20}, {8, 28}, {71, 83}, {12, 24}, {11, 31}, {10, 30},
{9, 29}, {96, 116}, {4, 17}, {261, 272}, {36, 49}, {6, 19}, {101, 115}, {5, 18},
{236, 251}, {67, 84}, {45, 58}, {33, 54}, {236, 244}, {109, 116}, {239, 246},
{130, 155}, {32, 58}, {231, 253}, {230, 252}, {14, 21}, {203, 208}, {5, 25},
{198, 218}, {197, 217}, {11, 23}, {10, 22}, {9, 21}, {7, 27}, {6, 26}, {135,
154}, {269, 272}, {192, 222}, {193, 223}, {100, 123}, {271, 272}, {270, 273},
{70, 102}, {213, 245}, {208, 240}, {9, 40}, {207, 238}, {80, 113}, {77, 108},
{11, 42}, {14, 44}, {223, 253}, {198, 228}, {15, 45}, {151, 181}, {10, 41}, {19,
48}, {134, 165}, {68, 96}, {211, 247}, {204, 232}, {146, 182}, {147, 183}, {144,
181}, {12, 42}, {79, 105}, {78, 104}, {31, 57}, {30, 56}, {23, 49}, {13, 43},
{155, 188}, {205, 234}, {209, 249}, {223, 247}, {213, 253}, {152, 177}, {211,
250}, {24, 50}, {77, 103}, {29, 55}, {28, 54}, {25, 51}, {130, 168}, {153, 178},
{12, 32}, {148, 184}, {135, 170}, {200, 229}, {15, 33}, {218, 244}, {64, 110},
{27, 53}, {26, 52}, {17, 63}, {16, 62}, {8, 39}, {64, 111}, {31, 48}, {131,
179}, {210, 226}, {150, 167}, {202, 251}, {14, 60}, {217, 235}, {67, 113}, {66,
112}, {20, 38}, {17, 35}, {16, 34}, {15, 61}, {134, 180}, {215, 228}, {20, 32},
{203, 255}, {202, 254}, {201, 253}, {26, 46}, {70, 115}, {139, 190}, {13, 59},
{221, 235}, {205, 251}, {81, 103}, {19, 37}, {18, 36}, {22, 33}, {82, 101}, {69,
114}, {218, 227}, {74, 112}, {158, 164}, {159, 165}, {157, 166}, {216, 227},
{72, 116}, {222, 226}, {219, 231}, {18, 47}, {196, 249}, {145, 172}, {149, 168},
{16, 46}, {199, 249}, {128, 190}, {197, 250}, {136, 200}, {152, 216}, {173,
237}, {22, 87}, {28, 93}, {26, 91}, {24, 89}, {132, 197}, {134, 199}, {31, 93},
{174, 236}, {129, 195}, {170, 232}, {171, 233}, {21, 86}, {25, 90}, {133, 198},
{156, 223}, {159, 220}, {164, 231}, {36, 96}, {175, 235}, {37, 97}, {160, 228},
{161, 229}, {39, 98}, {48, 117}, {163, 230}, {186, 252}, {27, 92}, {131, 196},
{154, 221}, {173, 234}, {29, 85}, {183, 255}, {182, 254}, {46, 102}, {138, 194},
{148, 220}, {44, 101}, {40, 99}, {176, 251}, {45, 97}, {51, 127}, {128, 206},
{186, 244}, {153, 215}, {23, 88}, {43, 100}, {140, 195}, {47, 126}, {184, 233},
{57, 104}, {18, 64}, {184, 234}, {63, 109}, {62, 108}, {161, 243}, {58, 105},
{147, 192}, {20, 64}, {41, 125}, {40, 124}, {35, 119}, {34, 118}, {23, 67}, {22,
66}, {21, 65}, {149, 193}, {43, 126}, {162, 247}, {30, 72}, {191, 233}, {187,
237}, {61, 107}, {60, 106}, {148, 194}, {172, 250}, {50, 106}, {57, 97}, {44,
117}, {128, 217}, {133, 220}, {28, 70}, {29, 71}, {129, 218}, {163, 248}, {24,
68}, {63, 99}, {62, 98}, {39, 123}, {38, 122}, {37, 121}, {36, 120}, {25, 69},
{179, 238}, {172, 242}, {183, 233}, {182, 232}, {56, 103}, {132, 219}, {178,
210}, {169, 200}, {38, 68}, {191, 221}, {50, 80}, {160, 195}, {40, 76}, {48,
84}, {42, 78}, {41, 77}, {42, 79}, {146, 247}, {55, 81}, {154, 252}, {47, 72},
{136, 239}, {158, 249}, {33, 75}, {43, 65}, {138, 224}, {139, 225}, {147, 248},
{37, 73}, {41, 69}, {39, 75}, {38, 74}, {166, 202}, {59, 86}, {140, 226}, {167,
215}, {187, 203}, {168, 216}, {144, 225}, {171, 217}, {175, 219}, {32, 85},
{180, 193}, {178, 199}, {177, 196}, {176, 197}, {190, 200}, {150, 238}, {174,
214}, {169, 209}, {141, 244}, {143, 246}, {157, 228}, {156, 230}, {142, 245},
{34, 94}, {47, 83}, {46, 82}, {45, 81}, {44, 80}, {35, 95}, {158, 226}, {159,
227}, {52, 73}, {157, 224}, {55, 73}, {53, 74}, {56, 71}, {142, 241}, {114,
242}, {75, 202}, {79, 204}, {76, 203}, {111, 232}, {89, 208}, {122, 243}, {92,
209}, {127, 239}, {55, 160}, {94, 201}, {63, 168}, {112, 231}, {56, 161}, {86,
207}, {62, 167}, {60, 165}, {58, 163}, {106, 240}, {107, 241}, {57, 162}, {61,
166}, {82, 206}, {80, 205}, {59, 164}, {118, 215}, {52, 144}, {54, 159}, {121,
208}, {101, 207}, {53, 158}, {115, 222}, {51, 157}, {120, 214}, {102, 201},
{119, 216}, {122, 213}, {52, 128}, {54, 130}, {53, 129}, {117, 192}, {123, 205},
{59, 131}, {61, 133}, {60, 132}, {106, 210}, {107, 211}, {108, 212}, {109, 212},
{111, 214}, {110, 213}, {127, 194}, {126, 193}, {126, 191}, {120, 187}, {125,
190}, {66, 135}, {115, 182}, {121, 188}, {85, 147}, {65, 134}, {74, 141}, {114,
181}, {122, 189}, {93, 148}, {95, 150}, {90, 144}, {91, 145}, {94, 149}, {91,
151}, {69, 136}, {117, 184}, {119, 186}, {125, 176}, {127, 177}, {93, 146},
{118, 185}, {98, 179}, {104, 185}, {105, 186}, {124, 175}, {72, 156}, {88, 142},
{89, 143}, {92, 139}, {99, 180}, {83, 138}, {92, 133}, {90, 131}, {85, 140},
{87, 141}, {82, 137}, {66, 156}, {84, 139}, {91, 132}, {75, 170}, {79, 174},
{77, 172}, {70, 164}, {78, 173}, {97, 130}, {111, 140}, {83, 183}, {110, 138},
{108, 137}, {76, 171}, {87, 176}, {112, 151}, {65, 169}, {84, 189}, {100, 136},
{95, 178}, {71, 169}, {94, 177}, {78, 191}, {87, 165}, {89, 173}, {114, 135},
{81, 167}, {88, 174}, {96, 151}, {113, 137}, {121, 129}, {86, 175}, {90, 160},
{98, 152}, {99, 153}, {116, 143}, {109, 145}, {110, 146}, {102, 155}, {104,
149}, {88, 166}, {95, 161}, {100, 154}, {105, 150}, {141, 261}, {143, 262},
{153, 264}, {152, 263}, {170, 259}, {162, 265}, {171, 260}, {179, 259}, {180,
260}, {189, 268}, {185, 266}, {185, 271}, {188, 267}, {188, 262}, {189, 257},
{195, 259}, {199, 261}, {206, 265}, {201, 257}, {196, 269}, {192, 268}, {198,
266}, {206, 256}, {210, 258}, {222, 270}, {212, 263}, {214, 258}, {211, 260},
{220, 260}, {219, 258}, {212, 264}, {230, 262}, {235, 271}, {229, 256}, {237,
266}, {224, 264}, {229, 268}, {225, 266}, {225, 269}, {252, 272}, {238, 256},
{255, 273}, {254, 273}, {224, 273}, {246, 263}, {248, 267}, {243, 261}, {245,
258}, {241, 265}, {248, 256}, {242, 267}, {246, 268}, {245, 264}, {240, 270}
}>;
(II) A more general form is to represent the graph as the orbit of {162, 163}
under the group generated by the following permutations:
a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17,
27)(19, 30)(21, 33)(23, 36)(24, 38)(26, 41)(28, 43)(29, 45)(31, 47)(34, 51)(35,
53)(37, 56)(39, 59)(40, 61)(42, 64)(44, 66)(46, 69)(48, 72)(50, 74)(52, 77)(54,
65)(55, 81)(57, 83)(58, 85)(60, 87)(62, 90)(63, 92)(67, 96)(70, 100)(71, 97)(73,
103)(75, 86)(76, 107)(78, 110)(79, 111)(80, 112)(82, 114)(84, 116)(88, 120)(89,
122)(91, 125)(93, 126)(94, 127)(95, 129)(98, 131)(99, 133)(101, 135)(102,
136)(104, 138)(105, 140)(106, 141)(108, 144)(109, 139)(113, 151)(115, 154)(117,
156)(118, 157)(119, 158)(121, 161)(123, 164)(124, 166)(128, 172)(130, 169)(132,
176)(134, 159)(137, 181)(142, 187)(143, 189)(145, 190)(146, 191)(147, 163)(148,
193)(149, 194)(150, 195)(152, 196)(153, 198)(155, 200)(160, 167)(162, 183)(168,
209)(170, 207)(171, 211)(173, 213)(174, 214)(175, 202)(178, 218)(180, 220)(182,
221)(184, 223)(185, 224)(186, 226)(188, 229)(192, 230)(199, 227)(201, 239)(203,
241)(204, 232)(205, 231)(206, 242)(208, 243)(210, 244)(212, 225)(215, 228)(216,
249)(217, 250)(219, 251)(222, 252)(233, 247)(234, 253)(235, 254)(236, 258)(237,
245)(238, 259)(240, 261)(246, 257)(255, 265)(256, 267)(262, 268)(263, 269)(264,
266)(270, 272)(271, 273) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 26)(11, 12)(13, 21)(15, 37)(16, 17)(18,
44)(20, 48)(22, 52)(23, 24)(25, 60)(28, 29)(30, 46)(31, 32)(33, 73)(34, 35)(36,
80)(38, 84)(39, 40)(41, 91)(43, 86)(45, 97)(47, 101)(49, 50)(51, 106)(53,
92)(54, 55)(56, 102)(57, 58)(59, 65)(61, 121)(62, 63)(64, 117)(66, 128)(67,
68)(69, 132)(70, 71)(72, 82)(74, 139)(75, 76)(77, 145)(78, 79)(81, 130)(83,
115)(85, 93)(87, 144)(88, 89)(90, 165)(94, 95)(96, 113)(98, 99)(100, 175)(103,
155)(104, 105)(107, 188)(108, 109)(110, 192)(111, 184)(112, 190)(114, 197)(116,
137)(118, 119)(120, 205)(122, 189)(123, 124)(125, 151)(126, 207)(127, 210)(129,
133)(131, 134)(135, 217)(136, 219)(138, 222)(140, 148)(141, 225)(142, 143)(146,
147)(149, 150)(152, 153)(154, 235)(156, 206)(157, 240)(158, 209)(159, 160)(161,
201)(162, 163)(164, 169)(166, 208)(167, 168)(170, 171)(173, 174)(176, 181)(177,
178)(179, 180)(182, 183)(185, 186)(187, 251)(191, 204)(193, 238)(194, 226)(195,
220)(196, 199)(198, 218)(200, 231)(202, 203)(211, 267)(213, 268)(214, 234)(215,
216)(223, 256)(224, 270)(227, 228)(229, 253)(230, 265)(232, 233)(236, 237)(239,
258)(241, 262)(242, 250)(243, 257)(244, 266)(245, 246)(247, 248)(252, 271)(254,
255)(259, 260)(261, 269)(263, 264)
c: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20,
31)(22, 34)(24, 37)(25, 39)(27, 42)(29, 44)(30, 46)(32, 48)(33, 49)(35, 52)(36,
54)(38, 57)(40, 60)(41, 62)(43, 59)(45, 67)(47, 70)(50, 73)(51, 75)(53, 78)(55,
80)(56, 82)(58, 84)(61, 88)(63, 91)(64, 93)(65, 86)(66, 94)(68, 97)(69, 98)(71,
101)(72, 102)(74, 104)(76, 106)(77, 108)(79, 92)(81, 113)(83, 115)(85, 117)(87,
118)(89, 121)(90, 123)(95, 128)(96, 130)(99, 132)(100, 131)(103, 137)(105,
139)(107, 142)(109, 145)(110, 146)(111, 148)(112, 149)(114, 152)(116, 155)(119,
144)(120, 159)(122, 162)(124, 165)(125, 167)(126, 164)(127, 170)(129, 173)(133,
174)(134, 175)(135, 177)(136, 179)(138, 182)(140, 184)(141, 185)(143, 188)(147,
192)(150, 190)(151, 168)(153, 197)(154, 196)(156, 201)(157, 202)(158, 191)(160,
205)(161, 206)(163, 189)(169, 207)(171, 210)(172, 212)(176, 215)(178, 217)(180,
219)(181, 216)(183, 222)(186, 225)(187, 227)(193, 231)(194, 232)(195, 234)(198,
236)(199, 235)(200, 238)(203, 240)(204, 209)(211, 245)(213, 247)(214, 220)(218,
237)(221, 249)(223, 253)(224, 254)(226, 233)(228, 251)(229, 256)(230, 257)(239,
259)(242, 263)(243, 265)(244, 266)(246, 267)(248, 268)(250, 264)(252, 269)(255,
270)(258, 260)(261, 271)
C4[ 273, 16 ]
273
-1 2 3 4 6
-2 1 5 7 10
-3 11 1 16 8
-4 1 12 17 9
-5 2 13 25 18
-6 1 14 26 19
-7 2 15 27 20
-8 13 3 28 39
-9 4 29 40 21
-10 22 2 30 41
-11 23 3 31 42
-12 24 4 42 32
-13 59 5 8 43
-14 44 60 6 21
-15 33 45 61 7
-16 34 46 3 62
-17 35 4 30 63
-18 36 47 5 64
-19 37 48 27 6
-20 38 7 64 32
-21 14 9 86 65
-22 33 66 10 87
-23 11 88 67 49
-24 12 89 68 50
-25 90 69 5 51
-26 46 91 6 52
-27 92 7 19 53
-28 70 93 8 54
-29 55 71 85 9
-30 56 17 72 10
-31 11 57 48 93
-32 12 58 85 20
-33 22 15 75 54
-34 16 49 94 118
-35 17 50 95 119
-36 49 18 96 120
-37 121 73 19 97
-38 122 68 74 20
-39 123 8 75 98
-40 99 124 9 76
-41 77 69 125 10
-42 11 12 78 79
-43 100 13 126 65
-44 101 14 80 117
-45 58 15 81 97
-46 102 26 16 82
-47 126 72 83 18
-48 84 117 19 31
-49 23 34 36 51
-50 24 35 80 106
-51 25 157 49 127
-52 144 26 73 128
-53 158 27 74 129
-54 33 159 28 130
-55 81 160 29 73
-56 103 71 161 30
-57 104 162 31 97
-58 45 105 163 32
-59 13 86 131 164
-60 132 165 14 106
-61 133 166 15 107
-62 167 16 108 98
-63 99 168 17 109
-64 110 111 18 20
-65 134 169 21 43
-66 22 112 156 135
-67 23 68 113 84
-68 67 24 38 96
-69 25 114 136 41
-70 102 115 28 164
-71 56 169 83 29
-72 156 47 116 30
-73 55 37 52 76
-74 112 38 53 141
-75 33 202 170 39
-76 203 171 40 73
-77 103 172 41 108
-78 191 104 173 42
-79 105 204 42 174
-80 44 113 50 205
-81 55 45 167 103
-82 46 101 137 206
-83 47 71 138 183
-84 67 189 48 139
-85 147 29 140 32
-86 59 207 21 175
-87 22 165 176 141
-88 23 166 174 142
-89 143 24 173 208
-90 144 25 160 131
-91 132 145 26 151
-92 209 133 27 139
-93 146 148 28 31
-94 34 177 201 149
-95 35 178 150 161
-96 68 36 116 151
-97 45 57 37 130
-98 179 39 62 152
-99 180 40 63 153
-100 154 123 136 43
-101 44 82 115 207
-102 155 46 201 70
-103 77 56 81 107
-104 78 57 149 185
-105 79 58 150 186
-106 210 60 50 240
-107 211 103 61 241
-108 77 212 137 62
-109 145 212 116 63
-110 146 213 138 64
-111 232 214 140 64
-112 66 231 74 151
-113 67 80 125 137
-114 242 69 135 181
-115 101 222 70 182
-116 143 72 96 109
-117 44 48 192 184
-118 34 124 215 185
-119 35 123 216 186
-120 187 36 124 214
-121 188 37 129 208
-122 243 189 213 38
-123 100 39 205 119
-124 40 118 120 175
-125 176 113 190 41
-126 47 191 193 43
-127 177 51 194 239
-128 190 52 206 217
-129 121 195 53 218
-130 155 168 97 54
-131 90 179 59 196
-132 91 60 197 219
-133 198 220 92 61
-134 165 199 180 65
-135 66 154 114 170
-136 100 200 69 239
-137 113 82 108 142
-138 110 224 83 194
-139 190 92 225 84
-140 111 226 85 195
-141 244 74 261 87
-142 88 245 137 241
-143 89 246 116 262
-144 90 181 225 52
-145 155 91 172 109
-146 110 93 247 182
-147 192 248 183 85
-148 220 93 194 184
-149 168 104 94 193
-150 167 105 95 238
-151 112 91 181 96
-152 177 216 98 263
-153 99 264 178 215
-154 100 221 135 252
-155 188 145 102 130
-156 66 223 72 230
-157 166 224 51 228
-158 226 249 53 164
-159 165 220 227 54
-160 55 90 195 228
-161 56 243 95 229
-162 265 57 247 163
-163 58 248 162 230
-164 231 59 70 158
-165 134 60 159 87
-166 88 157 202 61
-167 81 215 62 150
-168 149 216 63 130
-169 209 200 71 65
-170 232 135 259 75
-171 233 260 217 76
-172 77 242 145 250
-173 78 89 234 237
-174 88 79 214 236
-175 124 235 86 219
-176 125 251 87 197
-177 94 127 152 196
-178 199 210 95 153
-179 259 238 98 131
-180 99 134 193 260
-181 187 144 114 151
-182 232 254 146 115
-183 233 255 147 83
-184 233 234 148 117
-185 266 104 271 118
-186 244 105 119 252
-187 181 203 237 120
-188 121 155 267 262
-189 122 257 268 84
-190 200 125 128 139
-191 78 221 233 126
-192 222 147 268 117
-193 223 180 126 149
-194 209 148 127 138
-195 160 259 129 140
-196 177 269 249 131
-197 132 176 217 250
-198 133 266 228 218
-199 134 178 249 261
-200 190 136 169 229
-201 253 102 257 94
-202 166 254 75 251
-203 187 255 76 208
-204 221 232 79 207
-205 123 80 234 251
-206 265 256 82 128
-207 101 204 238 86
-208 121 89 203 240
-209 92 169 194 249
-210 178 258 226 106
-211 247 260 107 250
-212 264 108 109 263
-213 110 253 122 245
-214 111 258 174 120
-215 167 118 228 153
-216 168 227 119 152
-217 235 171 128 197
-218 198 244 227 129
-219 132 231 258 175
-220 133 148 159 260
-221 154 191 235 204
-222 115 192 226 270
-223 253 156 247 193
-224 264 157 138 273
-225 144 266 269 139
-226 210 222 158 140
-227 159 216 218 240
-228 198 157 160 215
-229 200 256 268 161
-230 156 163 262 252
-231 253 112 164 219
-232 111 170 182 204
-233 191 171 183 184
-234 205 173 184 239
-235 221 271 217 175
-236 244 237 174 251
-237 187 266 236 173
-238 179 256 150 207
-239 234 136 246 127
-240 270 106 227 208
-241 243 265 107 142
-242 255 267 114 172
-243 122 161 261 241
-244 236 141 218 186
-245 264 213 258 142
-246 143 268 239 263
-247 211 146 223 162
-248 256 267 147 163
-249 209 199 158 196
-250 254 211 172 197
-251 176 202 236 205
-252 154 272 186 230
-253 231 201 223 213
-254 202 182 250 273
-255 242 203 183 273
-256 248 238 206 229
-257 189 201 269 262
-258 210 245 214 219
-259 179 267 170 195
-260 220 211 180 171
-261 199 243 272 141
-262 143 188 257 230
-263 212 246 270 152
-264 212 245 224 153
-265 271 162 206 241
-266 198 225 237 185
-267 242 188 248 259
-268 189 246 192 229
-269 257 225 272 196
-270 222 240 273 263
-271 265 235 272 185
-272 269 271 261 252
-273 254 255 224 270
0