[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 276, 7 ] =
SDD(C_69(1,22)).
(I) Following is a form readable by MAGMA:
g:=Graph<276|{ {136, 140}, {133, 141}, {132, 141}, {134, 143}, {133, 140}, {134,
139}, {133, 139}, {130, 146}, {137, 152}, {134, 146}, {133, 144}, {136, 158},
{132, 159}, {132, 152}, {135, 153}, {137, 151}, {134, 153}, {136, 151}, {129,
161}, {136, 172}, {130, 170}, {132, 173}, {135, 172}, {131, 173}, {128, 182},
{130, 184}, {131, 185}, {138, 181}, {138, 203}, {129, 204}, {138, 199}, {131,
206}, {137, 199}, {137, 198}, {130, 208}, {135, 221}, {128, 222}, {131, 227},
{129, 227}, {135, 228}, {128, 243}, {128, 248}, {129, 248}, {138, 243}, {38,
167}, {71, 197}, {86, 212}, {20, 151}, {87, 212}, {24, 156}, {115, 247}, {99,
231}, {98, 230}, {27, 159}, {26, 158}, {25, 157}, {71, 195}, {10, 143}, {113,
244}, {101, 224}, {40, 173}, {114, 244}, {41, 174}, {113, 246}, {112, 247},
{111, 232}, {48, 183}, {92, 219}, {4, 140}, {126, 246}, {105, 225}, {6, 142},
{5, 141}, {2, 139}, {97, 232}, {52, 189}, {50, 187}, {90, 211}, {1, 139}, {72,
194}, {49, 186}, {72, 195}, {73, 194}, {74, 193}, {75, 192}, {94, 213}, {1,
141}, {39, 171}, {38, 170}, {23, 155}, {22, 154}, {21, 153}, {20, 152}, {1,
140}, {3, 142}, {2, 143}, {39, 169}, {100, 234}, {51, 188}, {75, 196}, {83,
220}, {2, 146}, {3, 147}, {1, 144}, {115, 226}, {40, 185}, {72, 217}, {3, 145},
{42, 184}, {6, 148}, {74, 216}, {4, 151}, {7, 148}, {75, 216}, {8, 156}, {9,
157}, {116, 225}, {76, 218}, {64, 215}, {112, 231}, {78, 217}, {65, 217}, {109,
245}, {100, 252}, {99, 251}, {66, 218}, {3, 154}, {98, 251}, {47, 182}, {45,
180}, {88, 193}, {89, 192}, {4, 158}, {111, 245}, {43, 177}, {42, 176}, {15,
149}, {5, 159}, {77, 215}, {2, 153}, {127, 228}, {46, 181}, {11, 144}, {7, 155},
{67, 223}, {75, 215}, {5, 152}, {97, 252}, {14, 147}, {12, 145}, {8, 149}, {71,
218}, {8, 150}, {126, 224}, {96, 254}, {9, 150}, {44, 179}, {13, 146}, {89,
249}, {94, 254}, {16, 177}, {18, 179}, {68, 229}, {92, 253}, {10, 168}, {107,
201}, {16, 178}, {73, 235}, {11, 168}, {28, 191}, {17, 178}, {69, 230}, {81,
242}, {82, 241}, {83, 240}, {72, 236}, {117, 209}, {108, 200}, {97, 197}, {12,
169}, {116, 209}, {14, 171}, {6, 160}, {24, 190}, {7, 161}, {95, 249}, {13,
170}, {99, 196}, {25, 190}, {19, 180}, {4, 172}, {23, 191}, {7, 175}, {6, 174},
{5, 173}, {70, 238}, {80, 249}, {71, 237}, {9, 162}, {16, 187}, {70, 237}, {8,
164}, {113, 221}, {15, 163}, {74, 230}, {83, 255}, {86, 250}, {10, 167}, {17,
188}, {19, 189}, {127, 208}, {74, 250}, {77, 253}, {85, 229}, {109, 223}, {127,
205}, {125, 207}, {122, 200}, {16, 163}, {76, 255}, {18, 166}, {126, 202}, {123,
207}, {86, 226}, {93, 233}, {94, 234}, {13, 184}, {19, 166}, {17, 164}, {15,
186}, {92, 233}, {101, 211}, {124, 202}, {122, 204}, {120, 206}, {14, 185},
{105, 222}, {18, 165}, {99, 219}, {110, 214}, {9, 176}, {22, 175}, {21, 172},
{31, 165}, {124, 198}, {108, 214}, {104, 210}, {12, 183}, {114, 201}, {28, 160},
{30, 162}, {29, 161}, {89, 229}, {11, 182}, {111, 210}, {97, 220}, {64, 253},
{66, 255}, {67, 254}, {69, 251}, {107, 213}, {10, 181}, {116, 203}, {114, 205},
{96, 223}, {23, 214}, {43, 234}, {17, 211}, {12, 207}, {103, 164}, {52, 247},
{36, 231}, {45, 233}, {102, 162}, {54, 242}, {59, 255}, {11, 206}, {106, 175},
{51, 246}, {44, 233}, {63, 250}, {50, 244}, {105, 175}, {55, 241}, {54, 240},
{19, 212}, {51, 244}, {33, 230}, {24, 223}, {21, 221}, {58, 242}, {57, 241},
{22, 222}, {114, 187}, {27, 209}, {58, 240}, {42, 224}, {40, 227}, {106, 161},
{104, 163}, {59, 240}, {62, 245}, {25, 213}, {123, 183}, {121, 181}, {117, 185},
{115, 191}, {37, 232}, {113, 188}, {112, 189}, {49, 252}, {60, 241}, {30, 208},
{120, 182}, {35, 237}, {34, 236}, {61, 242}, {25, 201}, {120, 168}, {45, 253},
{27, 203}, {26, 202}, {29, 204}, {122, 171}, {121, 168}, {58, 235}, {20, 198},
{123, 169}, {104, 186}, {18, 193}, {125, 174}, {122, 169}, {115, 160}, {109,
190}, {108, 191}, {52, 231}, {30, 205}, {20, 199}, {43, 254}, {107, 190}, {101,
176}, {58, 239}, {57, 236}, {56, 237}, {56, 238}, {124, 170}, {102, 176}, {57,
239}, {62, 232}, {47, 248}, {119, 160}, {57, 238}, {55, 239}, {37, 252}, {119,
174}, {110, 183}, {55, 238}, {54, 239}, {33, 250}, {124, 167}, {55, 236}, {49,
234}, {47, 243}, {13, 208}, {127, 162}, {101, 184}, {54, 235}, {46, 243}, {15,
210}, {63, 226}, {53, 235}, {121, 167}, {117, 171}, {100, 186}, {14, 209}, {36,
251}, {31, 192}, {23, 200}, {32, 192}, {126, 158}, {38, 198}, {37, 197}, {36,
196}, {35, 195}, {34, 194}, {33, 193}, {91, 187}, {34, 195}, {87, 180}, {119,
148}, {32, 196}, {29, 248}, {118, 147}, {46, 203}, {31, 249}, {117, 147}, {48,
214}, {41, 207}, {40, 206}, {35, 197}, {90, 188}, {59, 220}, {118, 145}, {90,
178}, {120, 144}, {92, 180}, {46, 199}, {91, 178}, {87, 189}, {123, 145}, {91,
177}, {28, 247}, {116, 159}, {39, 204}, {63, 212}, {88, 179}, {26, 246}, {118,
154}, {38, 202}, {62, 210}, {24, 245}, {51, 221}, {93, 179}, {39, 200}, {94,
177}, {102, 150}, {21, 228}, {109, 156}, {106, 155}, {103, 150}, {47, 222}, {87,
166}, {103, 149}, {105, 154}, {45, 219}, {121, 143}, {107, 157}, {22, 225},
{108, 155}, {53, 194}, {32, 215}, {32, 216}, {118, 142}, {91, 163}, {33, 216},
{119, 142}, {42, 211}, {37, 220}, {35, 218}, {26, 224}, {31, 229}, {30, 228},
{27, 225}, {34, 217}, {103, 156}, {102, 157}, {50, 201}, {89, 165}, {88, 165},
{104, 149}, {28, 226}, {106, 148}, {43, 213}, {29, 227}, {88, 166}, {90, 164},
{36, 219}, {50, 205}, {44, 270}, {53, 272}, {41, 258}, {60, 273}, {41, 262},
{44, 259}, {61, 274}, {56, 264}, {52, 262}, {53, 263}, {48, 260}, {49, 261},
{60, 265}, {61, 266}, {62, 265}, {59, 256}, {63, 260}, {60, 256}, {61, 257},
{56, 261}, {48, 271}, {77, 269}, {84, 276}, {77, 268}, {79, 269}, {66, 257},
{68, 263}, {70, 261}, {80, 275}, {81, 274}, {82, 273}, {84, 272}, {78, 267},
{69, 258}, {76, 267}, {85, 274}, {68, 268}, {66, 267}, {65, 267}, {69, 271},
{67, 264}, {64, 268}, {79, 259}, {95, 275}, {64, 269}, {76, 257}, {70, 264},
{73, 263}, {81, 257}, {95, 270}, {65, 275}, {67, 273}, {82, 256}, {85, 263},
{86, 260}, {83, 256}, {93, 270}, {65, 276}, {95, 266}, {68, 274}, {84, 259},
{73, 272}, {84, 269}, {85, 268}, {78, 276}, {80, 266}, {79, 276}, {81, 266},
{82, 265}, {78, 275}, {80, 270}, {93, 259}, {79, 272}, {98, 258}, {100, 261},
{110, 271}, {111, 265}, {96, 264}, {110, 260}, {98, 271}, {96, 273}, {112, 262},
{125, 262}, {125, 258} }>;
(II) A more general form is to represent the graph as the orbit of {136, 140}
under the group generated by the following permutations:
a: (49, 100) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (13, 130)
c: (44, 93)
d: (47, 128)
e: (21, 135)
f: (37, 97)
g: (59, 83)
h: (28, 115)
m: (6, 119)
n1: (41, 125)
a1: (39, 122)
b1: (68, 85)
c1: (20, 137)
d1: (4, 136)
e1: (64, 77)
f1: (56, 70)
g1: (63, 86)
h1: (79, 84)
m1: (50, 114)
n2: (8, 103)
a2: (12, 123)
b2: (42, 101)
c2: (7, 106)
d2: (2, 5)(3, 9)(4, 11)(6, 8)(7, 17)(10, 20)(12, 25)(13, 27)(14, 30)(15, 28)(16,
23)(18, 35)(19, 37)(21, 40)(22, 42)(24, 41)(26, 47)(29, 51)(31, 34)(32, 55)(33,
56)(36, 60)(38, 46)(39, 50)(43, 48)(44, 66)(45, 59)(49, 63)(52, 62)(53, 68)(54,
64)(57, 75)(58, 77)(61, 79)(65, 80)(67, 69)(70, 74)(71, 88)(72, 89)(73, 85)(76,
93)(78, 95)(81, 84)(82, 99)(83, 92)(86, 100)(87, 97)(90, 106)(91, 108)(94,
110)(96, 98)(101, 105)(102, 118)(103, 119)(104, 115)(107, 123)(109, 125)(111,
112)(113, 129)(114, 122)(116, 130)(117, 127)(120, 136)(121, 137)(124, 138)(126,
128)(131, 135)(132, 134)(139, 141)(140, 144)(142, 150)(143, 152)(145, 157)(146,
159)(147, 162)(148, 164)(149, 160)(151, 168)(153, 173)(154, 176)(155, 178)(156,
174)(158, 182)(161, 188)(163, 191)(165, 195)(166, 197)(167, 199)(169, 201)(170,
203)(171, 205)(172, 206)(175, 211)(177, 214)(179, 218)(180, 220)(181, 198)(183,
213)(184, 225)(185, 228)(186, 226)(187, 200)(189, 232)(190, 207)(192, 236)(193,
237)(194, 229)(196, 241)(202, 243)(204, 244)(208, 209)(210, 247)(212, 252)(215,
239)(216, 238)(217, 249)(219, 256)(221, 227)(222, 224)(223, 258)(230, 264)(231,
265)(233, 255)(234, 260)(235, 268)(240, 253)(242, 269)(245, 262)(246, 248)(250,
261)(251, 273)(254, 271)(257, 259)(266, 276)(267, 270)(272, 274)
e2: (34, 72)
f2: (43, 94)
g2: (30, 127)
h2: (16, 91)
m2: (38, 124)
n3: (55, 57)
a3: (2, 4)(3, 7)(5, 11)(9, 17)(10, 20)(12, 23)(13, 26)(14, 29)(15, 24)(16,
25)(18, 32)(19, 36)(27, 47)(28, 41)(30, 51)(35, 55)(37, 60)(44, 64)(49, 67)(53,
65)(54, 66)(57, 71)(58, 76)(63, 69)(68, 80)(73, 78)(75, 88)(77, 93)(82, 97)(85,
95)(86, 98)(87, 99)(90, 102)(91, 107)(96, 100)(104, 109)(106, 118)(108,
123)(113, 127)(115, 125)(116, 128)(117, 129)(120, 132)(121, 137)(126, 130)(134,
136)(139, 140)(141, 144)(142, 148)(143, 151)(145, 155)(146, 158)(147, 161)(149,
156)(150, 164)(152, 168)(153, 172)(154, 175)(157, 178)(159, 182)(160, 174)(162,
188)(163, 190)(165, 192)(166, 196)(167, 198)(169, 200)(170, 202)(171, 204)(173,
206)(176, 211)(177, 213)(179, 215)(180, 219)(181, 199)(183, 214)(184, 224)(185,
227)(186, 223)(187, 201)(189, 231)(191, 207)(193, 216)(194, 217)(195, 236)(197,
241)(203, 243)(205, 244)(208, 246)(209, 248)(210, 245)(212, 251)(218, 239)(220,
256)(221, 228)(222, 225)(226, 258)(229, 249)(230, 250)(232, 265)(233, 253)(234,
254)(235, 267)(237, 238)(240, 255)(242, 257)(247, 262)(252, 273)(259, 269)(260,
271)(261, 264)(263, 275)(266, 274)(268, 270)(272, 276)
b3: (17, 90)
c3: (61, 81)
d3: (2, 134)
e3: (22, 105)
f3: (51, 113)
g3: (69, 98)
h3: (11, 120)
m3: (23, 108)
n4: (25, 107)
a4: (26, 126)
b4: (1, 2)(3, 8)(4, 10)(5, 13)(6, 15)(7, 16)(9, 14)(11, 21)(12, 24)(17, 22)(18,
34)(19, 35)(20, 38)(23, 43)(25, 39)(26, 46)(27, 42)(28, 49)(29, 50)(30, 40)(31,
53)(32, 54)(33, 55)(36, 59)(37, 52)(41, 62)(44, 65)(45, 66)(47, 51)(48, 67)(56,
63)(57, 74)(58, 75)(60, 69)(61, 64)(70, 86)(71, 87)(72, 88)(73, 89)(76, 92)(77,
81)(78, 93)(79, 80)(82, 98)(83, 99)(84, 95)(90, 105)(91, 106)(94, 108)(96,
110)(97, 112)(100, 115)(101, 116)(102, 117)(103, 118)(104, 119)(107, 122)(109,
123)(111, 125)(113, 128)(114, 129)(120, 135)(121, 136)(124, 137)(126, 138)(127,
131)(130, 132)(133, 134)(140, 143)(141, 146)(142, 149)(144, 153)(145, 156)(147,
150)(148, 163)(151, 167)(152, 170)(154, 164)(155, 177)(157, 171)(158, 181)(159,
184)(160, 186)(161, 187)(162, 185)(165, 194)(166, 195)(168, 172)(169, 190)(173,
208)(174, 210)(175, 178)(176, 209)(179, 217)(180, 218)(182, 221)(183, 223)(188,
222)(189, 197)(191, 234)(192, 235)(193, 236)(196, 240)(199, 202)(200, 213)(201,
204)(203, 224)(205, 227)(206, 228)(207, 245)(211, 225)(212, 237)(214, 254)(215,
242)(216, 239)(219, 255)(220, 231)(226, 261)(229, 263)(230, 241)(232, 262)(233,
267)(238, 250)(243, 246)(244, 248)(247, 252)(249, 272)(251, 256)(253, 257)(258,
265)(259, 275)(260, 264)(266, 269)(268, 274)(270, 276)(271, 273)
c4: (32, 75)
d4: (66, 76)
e4: (54, 58)
f4: (24, 109)
g4: (5, 132)
h4: (35, 71)
m4: (46, 138)
n5: (67, 96)
a5: (15, 104)
b5: (36, 99)
c5: (60, 82)
d5: (33, 74)
e5: (10, 121)
f5: (19, 87)
g5: (52, 112)
h5: (9, 102)
m5: (62, 111)
n6: (48, 110)
a6: (65, 78)
b6: (29, 129)
c6: (45, 92)
d6: (27, 116)
e6: (31, 89)
f6: (40, 131)
g6: (3, 118)
h6: (18, 88)
m6: (80, 95)
n7: (14, 117)
C4[ 276, 7 ]
276
-1 144 139 140 141
-2 143 146 139 153
-3 154 145 147 142
-4 158 172 140 151
-5 159 173 141 152
-6 148 160 174 142
-7 155 148 161 175
-8 156 149 150 164
-9 176 157 150 162
-10 143 167 168 181
-11 144 168 182 206
-12 145 169 183 207
-13 146 170 184 208
-14 209 147 171 185
-15 210 149 163 186
-16 187 177 178 163
-17 188 178 211 164
-18 165 166 179 193
-19 166 189 212 180
-20 198 199 151 152
-21 221 172 228 153
-22 154 222 225 175
-23 155 200 191 214
-24 156 190 223 245
-25 157 190 201 213
-26 224 158 246 202
-27 209 159 203 225
-28 191 247 160 226
-29 204 248 161 227
-30 205 162 228 208
-31 165 192 249 229
-32 192 215 216 196
-33 193 216 250 230
-34 236 194 195 217
-35 237 195 218 197
-36 231 196 251 219
-37 220 232 197 252
-38 198 167 202 170
-39 200 169 171 204
-40 227 173 206 185
-41 258 174 207 262
-42 176 211 224 184
-43 177 254 234 213
-44 233 179 259 270
-45 253 233 180 219
-46 199 243 181 203
-47 243 222 182 248
-48 214 183 260 271
-49 234 261 186 252
-50 187 244 201 205
-51 188 221 244 246
-52 231 189 247 262
-53 235 194 272 263
-54 242 235 239 240
-55 236 238 239 241
-56 264 237 238 261
-57 236 238 239 241
-58 242 235 239 240
-59 220 255 256 240
-60 265 256 273 241
-61 242 266 257 274
-62 210 232 265 245
-63 212 226 260 250
-64 253 268 269 215
-65 275 276 267 217
-66 255 267 257 218
-67 264 254 223 273
-68 268 229 263 274
-69 258 271 251 230
-70 264 237 238 261
-71 237 195 218 197
-72 236 194 195 217
-73 235 194 272 263
-74 193 216 250 230
-75 192 215 216 196
-76 255 267 257 218
-77 253 268 269 215
-78 275 276 267 217
-79 276 269 259 272
-80 275 266 270 249
-81 242 266 257 274
-82 265 256 273 241
-83 220 255 256 240
-84 276 269 259 272
-85 268 229 263 274
-86 212 226 260 250
-87 166 189 212 180
-88 165 166 179 193
-89 165 192 249 229
-90 188 178 211 164
-91 187 177 178 163
-92 253 233 180 219
-93 233 179 259 270
-94 177 254 234 213
-95 275 266 270 249
-96 264 254 223 273
-97 220 232 197 252
-98 258 271 251 230
-99 231 196 251 219
-100 234 261 186 252
-101 176 211 224 184
-102 176 157 150 162
-103 156 149 150 164
-104 210 149 163 186
-105 154 222 225 175
-106 155 148 161 175
-107 157 190 201 213
-108 155 200 191 214
-109 156 190 223 245
-110 214 183 260 271
-111 210 232 265 245
-112 231 189 247 262
-113 188 221 244 246
-114 187 244 201 205
-115 191 247 160 226
-116 209 159 203 225
-117 209 147 171 185
-118 154 145 147 142
-119 148 160 174 142
-120 144 168 182 206
-121 143 167 168 181
-122 200 169 171 204
-123 145 169 183 207
-124 198 167 202 170
-125 258 174 207 262
-126 224 158 246 202
-127 205 162 228 208
-128 243 222 182 248
-129 204 248 161 227
-130 146 170 184 208
-131 227 173 206 185
-132 159 173 141 152
-133 144 139 140 141
-134 143 146 139 153
-135 221 172 228 153
-136 158 172 140 151
-137 198 199 151 152
-138 199 243 181 203
-139 1 133 2 134
-140 1 133 4 136
-141 132 1 133 5
-142 3 6 118 119
-143 121 2 134 10
-144 11 1 133 120
-145 12 123 3 118
-146 2 13 134 130
-147 3 14 117 118
-148 6 7 106 119
-149 15 103 104 8
-150 102 103 8 9
-151 4 136 137 20
-152 132 5 137 20
-153 2 134 135 21
-154 22 3 105 118
-155 23 7 106 108
-156 24 103 8 109
-157 25 102 107 9
-158 4 26 136 126
-159 132 5 27 116
-160 115 6 28 119
-161 7 29 106 129
-162 102 127 30 9
-163 91 15 16 104
-164 90 103 17 8
-165 88 89 18 31
-166 88 18 19 87
-167 121 124 38 10
-168 11 121 10 120
-169 12 122 123 39
-170 13 124 38 130
-171 122 14 39 117
-172 135 4 136 21
-173 132 5 40 131
-174 125 6 41 119
-175 22 105 7 106
-176 101 102 9 42
-177 91 16 94 43
-178 90 91 16 17
-179 44 88 93 18
-180 45 92 19 87
-181 121 46 138 10
-182 11 47 128 120
-183 110 12 123 48
-184 13 101 42 130
-185 14 40 117 131
-186 100 15 49 104
-187 91 114 16 50
-188 90 113 17 51
-189 112 19 52 87
-190 24 25 107 109
-191 23 115 28 108
-192 89 31 75 32
-193 33 88 18 74
-194 34 72 73 53
-195 34 35 71 72
-196 99 36 75 32
-197 35 37 71 97
-198 124 38 137 20
-199 46 137 138 20
-200 23 122 39 108
-201 25 114 50 107
-202 124 26 38 126
-203 46 27 116 138
-204 122 39 29 129
-205 114 50 127 30
-206 11 40 120 131
-207 12 123 125 41
-208 13 127 30 130
-209 14 27 116 117
-210 111 15 104 62
-211 90 101 17 42
-212 19 63 86 87
-213 25 94 107 43
-214 110 23 48 108
-215 77 64 75 32
-216 33 74 75 32
-217 34 78 72 65
-218 66 35 71 76
-219 99 45 36 92
-220 37 59 83 97
-221 113 135 51 21
-222 22 47 105 128
-223 67 24 96 109
-224 101 26 126 42
-225 22 27 105 116
-226 115 28 63 86
-227 29 40 129 131
-228 135 127 30 21
-229 89 68 85 31
-230 33 69 74 98
-231 99 112 36 52
-232 111 37 62 97
-233 44 45 92 93
-234 100 49 94 43
-235 58 73 53 54
-236 55 34 57 72
-237 56 35 70 71
-238 55 56 57 70
-239 55 57 58 54
-240 58 59 83 54
-241 55 57 60 82
-242 58 81 61 54
-243 46 47 138 128
-244 113 114 50 51
-245 111 24 62 109
-246 113 26 126 51
-247 112 115 28 52
-248 47 29 128 129
-249 89 80 95 31
-250 33 63 74 86
-251 99 36 69 98
-252 100 37 49 97
-253 77 45 92 64
-254 67 94 96 43
-255 66 59 83 76
-256 59 60 82 83
-257 66 81 61 76
-258 69 125 41 98
-259 44 79 93 84
-260 110 48 63 86
-261 56 100 70 49
-262 112 125 41 52
-263 68 73 85 53
-264 56 67 70 96
-265 111 60 82 62
-266 80 81 61 95
-267 66 78 65 76
-268 77 68 85 64
-269 77 79 84 64
-270 44 80 93 95
-271 110 69 48 98
-272 79 73 84 53
-273 67 60 82 96
-274 68 81 61 85
-275 78 80 95 65
-276 78 79 84 65
0