C4graphGraph forms for C4 [ 277, 1 ] = C_277(1,60)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 277, 1 ] = C_277(1,60).

(I) Following is a form readable by MAGMA:

g:=Graph<277|{ {2, 3}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {1, 2}, {273, 274}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {3, 4}, {275, 276}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {271, 272}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {1, 61}, {195, 255}, {194, 254}, {193, 253}, {192, 252}, {67, 127}, {66, 126}, {65, 125}, {64, 124}, {2, 62}, {3, 63}, {128, 188}, {129, 189}, {130, 190}, {131, 191}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {4, 64}, {191, 251}, {63, 123}, {62, 122}, {61, 121}, {60, 120}, {55, 115}, {54, 114}, {5, 65}, {6, 66}, {7, 67}, {12, 72}, {13, 73}, {14, 74}, {15, 75}, {20, 80}, {21, 81}, {22, 82}, {23, 83}, {28, 88}, {29, 89}, {30, 90}, {31, 91}, {36, 96}, {37, 97}, {38, 98}, {39, 99}, {44, 104}, {45, 105}, {46, 106}, {47, 107}, {52, 112}, {53, 113}, {132, 192}, {133, 193}, {134, 194}, {135, 195}, {140, 200}, {141, 201}, {142, 202}, {143, 203}, {148, 208}, {149, 209}, {150, 210}, {151, 211}, {156, 216}, {157, 217}, {158, 218}, {159, 219}, {164, 224}, {165, 225}, {166, 226}, {167, 227}, {172, 232}, {173, 233}, {174, 234}, {175, 235}, {180, 240}, {181, 241}, {182, 242}, {183, 243}, {188, 248}, {189, 249}, {190, 250}, {8, 68}, {59, 119}, {58, 118}, {57, 117}, {56, 116}, {9, 69}, {10, 70}, {11, 71}, {24, 84}, {25, 85}, {26, 86}, {27, 87}, {40, 100}, {41, 101}, {42, 102}, {43, 103}, {136, 196}, {137, 197}, {138, 198}, {139, 199}, {152, 212}, {153, 213}, {154, 214}, {155, 215}, {168, 228}, {169, 229}, {170, 230}, {171, 231}, {184, 244}, {185, 245}, {186, 246}, {187, 247}, {16, 76}, {17, 77}, {18, 78}, {19, 79}, {48, 108}, {49, 109}, {50, 110}, {51, 111}, {144, 204}, {145, 205}, {146, 206}, {147, 207}, {176, 236}, {177, 237}, {178, 238}, {179, 239}, {32, 92}, {33, 93}, {34, 94}, {35, 95}, {160, 220}, {161, 221}, {162, 222}, {163, 223}, {63, 64}, {191, 192}, {68, 128}, {101, 161}, {100, 160}, {95, 155}, {94, 154}, {93, 153}, {92, 152}, {87, 147}, {86, 146}, {85, 145}, {84, 144}, {79, 139}, {78, 138}, {77, 137}, {76, 136}, {71, 131}, {70, 130}, {69, 129}, {102, 162}, {103, 163}, {108, 168}, {109, 169}, {110, 170}, {111, 171}, {116, 176}, {117, 177}, {118, 178}, {119, 179}, {124, 184}, {125, 185}, {126, 186}, {127, 187}, {72, 132}, {91, 151}, {90, 150}, {89, 149}, {88, 148}, {75, 135}, {74, 134}, {73, 133}, {104, 164}, {105, 165}, {106, 166}, {107, 167}, {120, 180}, {121, 181}, {122, 182}, {123, 183}, {2, 219}, {4, 221}, {6, 223}, {32, 249}, {34, 251}, {36, 253}, {38, 255}, {1, 218}, {5, 222}, {33, 250}, {37, 254}, {80, 140}, {83, 143}, {82, 142}, {81, 141}, {112, 172}, {113, 173}, {114, 174}, {115, 175}, {3, 220}, {35, 252}, {7, 224}, {15, 232}, {23, 240}, {31, 248}, {8, 225}, {10, 227}, {12, 229}, {14, 231}, {24, 241}, {26, 243}, {28, 245}, {30, 247}, {9, 226}, {13, 230}, {25, 242}, {29, 246}, {11, 228}, {27, 244}, {16, 233}, {18, 235}, {20, 237}, {22, 239}, {17, 234}, {21, 238}, {96, 156}, {99, 159}, {98, 158}, {97, 157}, {19, 236}, {127, 128}, {1, 277}, {39, 256}, {55, 272}, {47, 264}, {40, 257}, {60, 277}, {58, 275}, {56, 273}, {42, 259}, {44, 261}, {46, 263}, {41, 258}, {57, 274}, {45, 262}, {43, 260}, {59, 276}, {48, 265}, {54, 271}, {50, 267}, {52, 269}, {49, 266}, {53, 270}, {51, 268}, {196, 256}, {215, 275}, {214, 274}, {213, 273}, {212, 272}, {207, 267}, {206, 266}, {205, 265}, {204, 264}, {199, 259}, {198, 258}, {197, 257}, {200, 260}, {217, 277}, {216, 276}, {203, 263}, {202, 262}, {201, 261}, {208, 268}, {211, 271}, {210, 270}, {209, 269}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277)
b: (2, 218, 277, 61)(3, 158, 276, 121)(4, 98, 275, 181)(5, 38, 274, 241)(6, 255, 273, 24)(7, 195, 272, 84)(8, 135, 271, 144)(9, 75, 270, 204)(10, 15, 269, 264)(11, 232, 268, 47)(12, 172, 267, 107)(13, 112, 266, 167)(14, 52, 265, 227)(16, 209, 263, 70)(17, 149, 262, 130)(18, 89, 261, 190)(19, 29, 260, 250)(20, 246, 259, 33)(21, 186, 258, 93)(22, 126, 257, 153)(23, 66, 256, 213)(25, 223, 254, 56)(26, 163, 253, 116)(27, 103, 252, 176)(28, 43, 251, 236)(30, 200, 249, 79)(31, 140, 248, 139)(32, 80, 247, 199)(34, 237, 245, 42)(35, 177, 244, 102)(36, 117, 243, 162)(37, 57, 242, 222)(39, 214, 240, 65)(40, 154, 239, 125)(41, 94, 238, 185)(44, 191, 235, 88)(45, 131, 234, 148)(46, 71, 233, 208)(48, 228, 231, 51)(49, 168, 230, 111)(50, 108, 229, 171)(53, 205, 226, 74)(54, 145, 225, 134)(55, 85, 224, 194)(58, 182, 221, 97)(59, 122, 220, 157)(60, 62, 219, 217)(63, 159, 216, 120)(64, 99, 215, 180)(67, 196, 212, 83)(68, 136, 211, 143)(69, 76, 210, 203)(72, 173, 207, 106)(73, 113, 206, 166)(77, 150, 202, 129)(78, 90, 201, 189)(81, 187, 198, 92)(82, 127, 197, 152)(86, 164, 193, 115)(87, 104, 192, 175)(91, 141, 188, 138)(95, 178, 184, 101)(96, 118, 183, 161)(100, 155, 179, 124)(105, 132, 174, 147)(109, 169, 170, 110)(114, 146, 165, 133)(119, 123, 160, 156)(128, 137, 151, 142)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 277, 1 ]
277
-1 2 277 61 218
-2 1 3 62 219
-3 220 2 4 63
-4 221 3 5 64
-5 222 4 6 65
-6 66 223 5 7
-7 67 224 6 8
-8 68 225 7 9
-9 69 226 8 10
-10 11 70 227 9
-11 12 71 228 10
-12 11 13 72 229
-13 12 14 73 230
-14 231 13 15 74
-15 232 14 16 75
-16 233 15 17 76
-17 77 234 16 18
-18 78 235 17 19
-19 79 236 18 20
-20 80 237 19 21
-21 22 81 238 20
-22 23 82 239 21
-23 22 24 83 240
-24 23 25 84 241
-25 242 24 26 85
-26 243 25 27 86
-27 244 26 28 87
-28 88 245 27 29
-29 89 246 28 30
-30 90 247 29 31
-31 91 248 30 32
-32 33 92 249 31
-33 34 93 250 32
-34 33 35 94 251
-35 34 36 95 252
-36 253 35 37 96
-37 254 36 38 97
-38 255 37 39 98
-39 99 256 38 40
-40 100 257 39 41
-41 101 258 40 42
-42 102 259 41 43
-43 44 103 260 42
-44 45 104 261 43
-45 44 46 105 262
-46 45 47 106 263
-47 264 46 48 107
-48 265 47 49 108
-49 266 48 50 109
-50 110 267 49 51
-51 111 268 50 52
-52 112 269 51 53
-53 113 270 52 54
-54 55 114 271 53
-55 56 115 272 54
-56 55 57 116 273
-57 56 58 117 274
-58 275 57 59 118
-59 276 58 60 119
-60 277 59 61 120
-61 121 1 60 62
-62 122 2 61 63
-63 123 3 62 64
-64 124 4 63 65
-65 66 125 5 64
-66 67 126 6 65
-67 66 68 127 7
-68 67 69 128 8
-69 68 70 129 9
-70 69 71 130 10
-71 11 70 72 131
-72 132 12 71 73
-73 133 13 72 74
-74 134 14 73 75
-75 135 15 74 76
-76 77 136 16 75
-77 78 137 17 76
-78 77 79 138 18
-79 78 80 139 19
-80 79 81 140 20
-81 80 82 141 21
-82 22 81 83 142
-83 143 23 82 84
-84 144 24 83 85
-85 145 25 84 86
-86 146 26 85 87
-87 88 147 27 86
-88 89 148 28 87
-89 88 90 149 29
-90 89 91 150 30
-91 90 92 151 31
-92 91 93 152 32
-93 33 92 94 153
-94 154 34 93 95
-95 155 35 94 96
-96 156 36 95 97
-97 157 37 96 98
-98 99 158 38 97
-99 100 159 39 98
-100 99 101 160 40
-101 100 102 161 41
-102 101 103 162 42
-103 102 104 163 43
-104 44 103 105 164
-105 165 45 104 106
-106 166 46 105 107
-107 167 47 106 108
-108 168 48 107 109
-109 110 169 49 108
-110 111 170 50 109
-111 110 112 171 51
-112 111 113 172 52
-113 112 114 173 53
-114 113 115 174 54
-115 55 114 116 175
-116 176 56 115 117
-117 177 57 116 118
-118 178 58 117 119
-119 179 59 118 120
-120 121 180 60 119
-121 122 181 61 120
-122 121 123 182 62
-123 122 124 183 63
-124 123 125 184 64
-125 124 126 185 65
-126 66 125 127 186
-127 187 67 126 128
-128 188 68 127 129
-129 189 69 128 130
-130 190 70 129 131
-131 132 191 71 130
-132 133 192 72 131
-133 132 134 193 73
-134 133 135 194 74
-135 134 136 195 75
-136 135 137 196 76
-137 77 136 138 197
-138 198 78 137 139
-139 199 79 138 140
-140 200 80 139 141
-141 201 81 140 142
-142 143 202 82 141
-143 144 203 83 142
-144 143 145 204 84
-145 144 146 205 85
-146 145 147 206 86
-147 146 148 207 87
-148 88 147 149 208
-149 209 89 148 150
-150 210 90 149 151
-151 211 91 150 152
-152 212 92 151 153
-153 154 213 93 152
-154 155 214 94 153
-155 154 156 215 95
-156 155 157 216 96
-157 156 158 217 97
-158 157 159 218 98
-159 99 158 160 219
-160 220 100 159 161
-161 221 101 160 162
-162 222 102 161 163
-163 223 103 162 164
-164 165 224 104 163
-165 166 225 105 164
-166 165 167 226 106
-167 166 168 227 107
-168 167 169 228 108
-169 168 170 229 109
-170 110 169 171 230
-171 231 111 170 172
-172 232 112 171 173
-173 233 113 172 174
-174 234 114 173 175
-175 176 235 115 174
-176 177 236 116 175
-177 176 178 237 117
-178 177 179 238 118
-179 178 180 239 119
-180 179 181 240 120
-181 121 180 182 241
-182 242 122 181 183
-183 243 123 182 184
-184 244 124 183 185
-185 245 125 184 186
-186 187 246 126 185
-187 188 247 127 186
-188 187 189 248 128
-189 188 190 249 129
-190 189 191 250 130
-191 190 192 251 131
-192 132 191 193 252
-193 253 133 192 194
-194 254 134 193 195
-195 255 135 194 196
-196 256 136 195 197
-197 198 257 137 196
-198 199 258 138 197
-199 198 200 259 139
-200 199 201 260 140
-201 200 202 261 141
-202 201 203 262 142
-203 143 202 204 263
-204 264 144 203 205
-205 265 145 204 206
-206 266 146 205 207
-207 267 147 206 208
-208 209 268 148 207
-209 210 269 149 208
-210 209 211 270 150
-211 210 212 271 151
-212 211 213 272 152
-213 212 214 273 153
-214 154 213 215 274
-215 275 155 214 216
-216 276 156 215 217
-217 277 157 216 218
-218 1 158 217 219
-219 220 2 159 218
-220 221 3 160 219
-221 220 222 4 161
-222 221 223 5 162
-223 222 224 6 163
-224 223 225 7 164
-225 165 224 226 8
-226 166 225 227 9
-227 167 226 228 10
-228 11 168 227 229
-229 12 169 228 230
-230 231 13 170 229
-231 232 14 171 230
-232 231 233 15 172
-233 232 234 16 173
-234 233 235 17 174
-235 234 236 18 175
-236 176 235 237 19
-237 177 236 238 20
-238 178 237 239 21
-239 22 179 238 240
-240 23 180 239 241
-241 242 24 181 240
-242 243 25 182 241
-243 242 244 26 183
-244 243 245 27 184
-245 244 246 28 185
-246 245 247 29 186
-247 187 246 248 30
-248 188 247 249 31
-249 189 248 250 32
-250 33 190 249 251
-251 34 191 250 252
-252 253 35 192 251
-253 254 36 193 252
-254 253 255 37 194
-255 254 256 38 195
-256 255 257 39 196
-257 256 258 40 197
-258 198 257 259 41
-259 199 258 260 42
-260 200 259 261 43
-261 44 201 260 262
-262 45 202 261 263
-263 264 46 203 262
-264 265 47 204 263
-265 264 266 48 205
-266 265 267 49 206
-267 266 268 50 207
-268 267 269 51 208
-269 209 268 270 52
-270 210 269 271 53
-271 211 270 272 54
-272 55 212 271 273
-273 56 213 272 274
-274 275 57 214 273
-275 276 58 215 274
-276 275 277 59 216
-277 1 276 60 217
0

**************