C4graphGraph forms for C4 [ 278, 1 ] = W(139,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 278, 1 ] = W(139,2).

(I) Following is a form readable by MAGMA:

g:=Graph<278|{ {2, 3}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {1, 2}, {277, 278}, {273, 274}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {3, 4}, {275, 276}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {7, 8}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {15, 16}, {271, 272}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {191, 192}, {1, 139}, {85, 223}, {84, 222}, {81, 219}, {80, 218}, {69, 207}, {68, 206}, {65, 203}, {64, 202}, {53, 191}, {52, 190}, {4, 142}, {5, 143}, {16, 154}, {17, 155}, {20, 158}, {21, 159}, {32, 170}, {33, 171}, {36, 174}, {37, 175}, {48, 186}, {49, 187}, {96, 234}, {97, 235}, {100, 238}, {101, 239}, {112, 250}, {113, 251}, {116, 254}, {117, 255}, {1, 141}, {83, 223}, {82, 222}, {81, 221}, {80, 220}, {67, 207}, {66, 206}, {65, 205}, {64, 204}, {51, 191}, {50, 190}, {2, 142}, {3, 143}, {16, 156}, {17, 157}, {18, 158}, {19, 159}, {32, 172}, {33, 173}, {34, 174}, {35, 175}, {48, 188}, {49, 189}, {96, 236}, {97, 237}, {98, 238}, {99, 239}, {112, 252}, {113, 253}, {114, 254}, {115, 255}, {2, 140}, {83, 221}, {82, 220}, {67, 205}, {66, 204}, {51, 189}, {3, 141}, {18, 156}, {19, 157}, {34, 172}, {35, 173}, {50, 188}, {98, 236}, {99, 237}, {114, 252}, {115, 253}, {4, 144}, {79, 219}, {78, 218}, {77, 217}, {76, 216}, {71, 211}, {70, 210}, {69, 209}, {68, 208}, {5, 145}, {6, 146}, {7, 147}, {12, 152}, {13, 153}, {14, 154}, {15, 155}, {36, 176}, {37, 177}, {38, 178}, {39, 179}, {44, 184}, {45, 185}, {46, 186}, {47, 187}, {100, 240}, {101, 241}, {102, 242}, {103, 243}, {108, 248}, {109, 249}, {110, 250}, {111, 251}, {6, 144}, {79, 217}, {78, 216}, {71, 209}, {70, 208}, {7, 145}, {14, 152}, {15, 153}, {38, 176}, {39, 177}, {46, 184}, {47, 185}, {102, 240}, {103, 241}, {110, 248}, {111, 249}, {8, 146}, {77, 215}, {76, 214}, {73, 211}, {72, 210}, {9, 147}, {12, 150}, {13, 151}, {40, 178}, {41, 179}, {44, 182}, {45, 183}, {104, 242}, {105, 243}, {108, 246}, {109, 247}, {8, 148}, {75, 215}, {74, 214}, {73, 213}, {72, 212}, {9, 149}, {10, 150}, {11, 151}, {40, 180}, {41, 181}, {42, 182}, {43, 183}, {104, 244}, {105, 245}, {106, 246}, {107, 247}, {10, 148}, {75, 213}, {74, 212}, {11, 149}, {42, 180}, {43, 181}, {106, 244}, {107, 245}, {20, 160}, {85, 225}, {84, 224}, {21, 161}, {22, 162}, {23, 163}, {28, 168}, {29, 169}, {30, 170}, {31, 171}, {86, 226}, {87, 227}, {92, 232}, {93, 233}, {94, 234}, {95, 235}, {22, 160}, {23, 161}, {30, 168}, {31, 169}, {86, 224}, {87, 225}, {94, 232}, {95, 233}, {24, 162}, {25, 163}, {28, 166}, {29, 167}, {88, 226}, {89, 227}, {92, 230}, {93, 231}, {24, 164}, {25, 165}, {26, 166}, {27, 167}, {88, 228}, {89, 229}, {90, 230}, {91, 231}, {26, 164}, {27, 165}, {90, 228}, {91, 229}, {52, 192}, {63, 203}, {62, 202}, {61, 201}, {60, 200}, {55, 195}, {54, 194}, {53, 193}, {54, 192}, {63, 201}, {62, 200}, {55, 193}, {56, 194}, {61, 199}, {60, 198}, {57, 195}, {56, 196}, {59, 199}, {58, 198}, {57, 197}, {58, 196}, {59, 197}, {127, 128}, {1, 278}, {116, 256}, {117, 257}, {118, 258}, {119, 259}, {124, 264}, {125, 265}, {126, 266}, {127, 267}, {118, 256}, {119, 257}, {126, 264}, {127, 265}, {120, 258}, {121, 259}, {124, 262}, {125, 263}, {120, 260}, {121, 261}, {122, 262}, {123, 263}, {122, 260}, {123, 261}, {128, 266}, {129, 267}, {132, 270}, {133, 271}, {128, 268}, {129, 269}, {130, 270}, {131, 271}, {130, 268}, {131, 269}, {132, 272}, {133, 273}, {134, 274}, {135, 275}, {134, 272}, {135, 273}, {136, 274}, {137, 275}, {140, 278}, {136, 276}, {137, 277}, {138, 278}, {138, 276}, {139, 277}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (35, 174)
b: (99, 238)
c: (66, 205)
d: (2, 141)
e: (24, 163)
f: (88, 227)
g: (56, 195)
h: (139, 278)
m: (130, 269)
n1: (115, 254)
a1: (51, 190)
b1: (105, 244)
c1: (41, 180)
d1: (109, 248)
e1: (45, 184)
f1: (15, 154)
g1: (79, 218)
h1: (14, 153)
m1: (78, 217)
n2: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139)(140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278)
a2: (120, 259)
b2: (62, 201)
c2: (10, 149)
d2: (74, 213)
e2: (59, 198)
f2: (26, 165)
g2: (90, 229)
h2: (104, 243)
m2: (40, 179)
n3: (28, 167)
a3: (92, 231)
b3: (6, 145)
c3: (70, 209)
d3: (106, 245)
e3: (42, 181)
f3: (63, 202)
g3: (65, 204)
h3: (30, 169)
m3: (94, 233)
n4: (31, 170)
a4: (95, 234)
b4: (22, 161)
c4: (86, 225)
d4: (34, 173)
e4: (98, 237)
f4: (7, 146)
g4: (71, 210)
h4: (122, 261)
m4: (123, 262)
n5: (61, 200)
a5: (2, 139)(3, 138)(4, 137)(5, 136)(6, 135)(7, 134)(8, 133)(9, 132)(10, 131)(11, 130)(12, 129)(13, 128)(14, 127)(15, 126)(16, 125)(17, 124)(18, 123)(19, 122)(20, 121)(21, 120)(22, 119)(23, 118)(24, 117)(25, 116)(26, 115)(27, 114)(28, 113)(29, 112)(30, 111)(31, 110)(32, 109)(33, 108)(34, 107)(35, 106)(36, 105)(37, 104)(38, 103)(39, 102)(40, 101)(41, 100)(42, 99)(43, 98)(44, 97)(45, 96)(46, 95)(47, 94)(48, 93)(49, 92)(50, 91)(51, 90)(52, 89)(53, 88)(54, 87)(55, 86)(56, 85)(57, 84)(58, 83)(59, 82)(60, 81)(61, 80)(62, 79)(63, 78)(64, 77)(65, 76)(66, 75)(67, 74)(68, 73)(69, 72)(70, 71)(141, 278)(142, 277)(143, 276)(144, 275)(145, 274)(146, 273)(147, 272)(148, 271)(149, 270)(150, 269)(151, 268)(152, 267)(153, 266)(154, 265)(155, 264)(156, 263)(157, 262)(158, 261)(159, 260)(160, 259)(161, 258)(162, 257)(163, 256)(164, 255)(165, 254)(166, 253)(167, 252)(168, 251)(169, 250)(170, 249)(171, 248)(172, 247)(173, 246)(174, 245)(175, 244)(176, 243)(177, 242)(178, 241)(179, 240)(180, 239)(181, 238)(182, 237)(183, 236)(184, 235)(185, 234)(186, 233)(187, 232)(188, 231)(189, 230)(190, 229)(191, 228)(192, 227)(193, 226)(194, 225)(195, 224)(196, 223)(197, 222)(198, 221)(199, 220)(200, 219)(201, 218)(202, 217)(203, 216)(204, 215)(205, 214)(206, 213)(207, 212)(208, 211)(209, 210)
b5: (21, 160)
c5: (85, 224)
d5: (134, 273)
e5: (112, 251)
f5: (48, 187)
g5: (38, 177)
h5: (102, 241)
m5: (137, 276)
n6: (125, 264)
a6: (128, 267)
b6: (96, 235)
c6: (32, 171)
d6: (9, 148)
e6: (73, 212)
f6: (20, 159)
g6: (84, 223)
h6: (29, 168)
m6: (93, 232)
n7: (133, 272)
a7: (5, 144)
b7: (39, 178)
c7: (103, 242)
d7: (58, 197)
e7: (124, 263)
f7: (117, 256)
g7: (53, 192)
h7: (114, 253)
m7: (50, 189)
n8: (64, 203)
a8: (8, 147)
b8: (72, 211)
c8: (110, 249)
d8: (46, 185)
e8: (118, 257)
f8: (135, 274)
g8: (126, 265)
h8: (121, 260)
m8: (91, 230)
n9: (27, 166)
a9: (13, 152)
b9: (77, 216)
c9: (33, 172)
d9: (97, 236)
e9: (11, 150)
f9: (49, 188)
g9: (113, 252)
h9: (75, 214)
m9: (101, 240)
n10: (37, 176)
a10: (23, 162)
b10: (87, 226)
c10: (138, 277)
d10: (108, 247)
e10: (44, 183)
f10: (136, 275)
g10: (132, 271)
h10: (131, 270)
m10: (107, 246)
n11: (3, 142)
a11: (43, 182)
b11: (67, 206)
c11: (12, 151)
d11: (76, 215)
e11: (18, 157)
f11: (82, 221)
g11: (19, 158)
h11: (83, 222)
m11: (57, 196)
n12: (127, 266)
a12: (129, 268)
b12: (16, 155)
c12: (55, 194)
d12: (80, 219)
e12: (17, 156)
f12: (81, 220)
g12: (119, 258)
h12: (54, 193)
m12: (36, 175)
n13: (89, 228)
a13: (25, 164)
b13: (100, 239)
c13: (4, 143)
d13: (47, 186)
e13: (111, 250)
f13: (68, 207)
g13: (116, 255)
h13: (52, 191)
m13: (60, 199)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 278, 1 ]
278
-1 2 278 139 141
-2 1 3 140 142
-3 143 2 4 141
-4 144 3 5 142
-5 143 145 4 6
-6 144 146 5 7
-7 145 147 6 8
-8 146 148 7 9
-9 147 149 8 10
-10 11 148 150 9
-11 12 149 151 10
-12 11 13 150 152
-13 12 14 151 153
-14 154 13 15 152
-15 155 14 16 153
-16 154 156 15 17
-17 155 157 16 18
-18 156 158 17 19
-19 157 159 18 20
-20 158 160 19 21
-21 22 159 161 20
-22 23 160 162 21
-23 22 24 161 163
-24 23 25 162 164
-25 165 24 26 163
-26 166 25 27 164
-27 165 167 26 28
-28 166 168 27 29
-29 167 169 28 30
-30 168 170 29 31
-31 169 171 30 32
-32 33 170 172 31
-33 34 171 173 32
-34 33 35 172 174
-35 34 36 173 175
-36 176 35 37 174
-37 177 36 38 175
-38 176 178 37 39
-39 177 179 38 40
-40 178 180 39 41
-41 179 181 40 42
-42 180 182 41 43
-43 44 181 183 42
-44 45 182 184 43
-45 44 46 183 185
-46 45 47 184 186
-47 187 46 48 185
-48 188 47 49 186
-49 187 189 48 50
-50 188 190 49 51
-51 189 191 50 52
-52 190 192 51 53
-53 191 193 52 54
-54 55 192 194 53
-55 56 193 195 54
-56 55 57 194 196
-57 56 58 195 197
-58 198 57 59 196
-59 199 58 60 197
-60 198 200 59 61
-61 199 201 60 62
-62 200 202 61 63
-63 201 203 62 64
-64 202 204 63 65
-65 66 203 205 64
-66 67 204 206 65
-67 66 68 205 207
-68 67 69 206 208
-69 209 68 70 207
-70 210 69 71 208
-71 209 211 70 72
-72 210 212 71 73
-73 211 213 72 74
-74 212 214 73 75
-75 213 215 74 76
-76 77 214 216 75
-77 78 215 217 76
-78 77 79 216 218
-79 78 80 217 219
-80 220 79 81 218
-81 221 80 82 219
-82 220 222 81 83
-83 221 223 82 84
-84 222 224 83 85
-85 223 225 84 86
-86 224 226 85 87
-87 88 225 227 86
-88 89 226 228 87
-89 88 90 227 229
-90 89 91 228 230
-91 231 90 92 229
-92 232 91 93 230
-93 231 233 92 94
-94 232 234 93 95
-95 233 235 94 96
-96 234 236 95 97
-97 235 237 96 98
-98 99 236 238 97
-99 100 237 239 98
-100 99 101 238 240
-101 100 102 239 241
-102 242 101 103 240
-103 243 102 104 241
-104 242 244 103 105
-105 243 245 104 106
-106 244 246 105 107
-107 245 247 106 108
-108 246 248 107 109
-109 110 247 249 108
-110 111 248 250 109
-111 110 112 249 251
-112 111 113 250 252
-113 253 112 114 251
-114 254 113 115 252
-115 253 255 114 116
-116 254 256 115 117
-117 255 257 116 118
-118 256 258 117 119
-119 257 259 118 120
-120 121 258 260 119
-121 122 259 261 120
-122 121 123 260 262
-123 122 124 261 263
-124 264 123 125 262
-125 265 124 126 263
-126 264 266 125 127
-127 265 267 126 128
-128 266 268 127 129
-129 267 269 128 130
-130 268 270 129 131
-131 132 269 271 130
-132 133 270 272 131
-133 132 134 271 273
-134 133 135 272 274
-135 275 134 136 273
-136 276 135 137 274
-137 275 277 136 138
-138 276 278 137 139
-139 1 277 138 140
-140 2 278 139 141
-141 1 3 140 142
-142 143 2 4 141
-143 144 3 5 142
-144 143 145 4 6
-145 144 146 5 7
-146 145 147 6 8
-147 146 148 7 9
-148 147 149 8 10
-149 11 148 150 9
-150 12 149 151 10
-151 11 13 150 152
-152 12 14 151 153
-153 154 13 15 152
-154 155 14 16 153
-155 154 156 15 17
-156 155 157 16 18
-157 156 158 17 19
-158 157 159 18 20
-159 158 160 19 21
-160 22 159 161 20
-161 23 160 162 21
-162 22 24 161 163
-163 23 25 162 164
-164 165 24 26 163
-165 166 25 27 164
-166 165 167 26 28
-167 166 168 27 29
-168 167 169 28 30
-169 168 170 29 31
-170 169 171 30 32
-171 33 170 172 31
-172 34 171 173 32
-173 33 35 172 174
-174 34 36 173 175
-175 176 35 37 174
-176 177 36 38 175
-177 176 178 37 39
-178 177 179 38 40
-179 178 180 39 41
-180 179 181 40 42
-181 180 182 41 43
-182 44 181 183 42
-183 45 182 184 43
-184 44 46 183 185
-185 45 47 184 186
-186 187 46 48 185
-187 188 47 49 186
-188 187 189 48 50
-189 188 190 49 51
-190 189 191 50 52
-191 190 192 51 53
-192 191 193 52 54
-193 55 192 194 53
-194 56 193 195 54
-195 55 57 194 196
-196 56 58 195 197
-197 198 57 59 196
-198 199 58 60 197
-199 198 200 59 61
-200 199 201 60 62
-201 200 202 61 63
-202 201 203 62 64
-203 202 204 63 65
-204 66 203 205 64
-205 67 204 206 65
-206 66 68 205 207
-207 67 69 206 208
-208 209 68 70 207
-209 210 69 71 208
-210 209 211 70 72
-211 210 212 71 73
-212 211 213 72 74
-213 212 214 73 75
-214 213 215 74 76
-215 77 214 216 75
-216 78 215 217 76
-217 77 79 216 218
-218 78 80 217 219
-219 220 79 81 218
-220 221 80 82 219
-221 220 222 81 83
-222 221 223 82 84
-223 222 224 83 85
-224 223 225 84 86
-225 224 226 85 87
-226 88 225 227 86
-227 89 226 228 87
-228 88 90 227 229
-229 89 91 228 230
-230 231 90 92 229
-231 232 91 93 230
-232 231 233 92 94
-233 232 234 93 95
-234 233 235 94 96
-235 234 236 95 97
-236 235 237 96 98
-237 99 236 238 97
-238 100 237 239 98
-239 99 101 238 240
-240 100 102 239 241
-241 242 101 103 240
-242 243 102 104 241
-243 242 244 103 105
-244 243 245 104 106
-245 244 246 105 107
-246 245 247 106 108
-247 246 248 107 109
-248 110 247 249 108
-249 111 248 250 109
-250 110 112 249 251
-251 111 113 250 252
-252 253 112 114 251
-253 254 113 115 252
-254 253 255 114 116
-255 254 256 115 117
-256 255 257 116 118
-257 256 258 117 119
-258 257 259 118 120
-259 121 258 260 119
-260 122 259 261 120
-261 121 123 260 262
-262 122 124 261 263
-263 264 123 125 262
-264 265 124 126 263
-265 264 266 125 127
-266 265 267 126 128
-267 266 268 127 129
-268 267 269 128 130
-269 268 270 129 131
-270 132 269 271 130
-271 133 270 272 131
-272 132 134 271 273
-273 133 135 272 274
-274 275 134 136 273
-275 276 135 137 274
-276 275 277 136 138
-277 276 278 137 139
-278 1 277 138 140
0

**************