C4graphGraph forms for C4 [ 280, 1 ] = W(140,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 280, 1 ] = W(140,2).

(I) Following is a form readable by MAGMA:

g:=Graph<280|{ {2, 3}, {278, 279}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {1, 2}, {277, 278}, {273, 274}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {3, 4}, {275, 276}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {7, 8}, {279, 280}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {15, 16}, {271, 272}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {191, 192}, {4, 143}, {84, 223}, {80, 219}, {68, 207}, {64, 203}, {52, 191}, {16, 155}, {20, 159}, {32, 171}, {36, 175}, {48, 187}, {96, 235}, {100, 239}, {112, 251}, {116, 255}, {1, 140}, {83, 222}, {82, 223}, {81, 220}, {80, 221}, {67, 206}, {66, 207}, {65, 204}, {64, 205}, {51, 190}, {2, 143}, {3, 142}, {16, 157}, {17, 156}, {18, 159}, {19, 158}, {32, 173}, {33, 172}, {34, 175}, {35, 174}, {48, 189}, {49, 188}, {50, 191}, {96, 237}, {97, 236}, {98, 239}, {99, 238}, {112, 253}, {113, 252}, {114, 255}, {115, 254}, {1, 142}, {82, 221}, {81, 222}, {66, 205}, {65, 206}, {2, 141}, {17, 158}, {18, 157}, {33, 174}, {34, 173}, {49, 190}, {50, 189}, {97, 238}, {98, 237}, {113, 254}, {114, 253}, {3, 144}, {79, 220}, {75, 216}, {71, 212}, {67, 208}, {7, 148}, {11, 152}, {15, 156}, {35, 176}, {39, 180}, {43, 184}, {47, 188}, {99, 240}, {103, 244}, {107, 248}, {111, 252}, {4, 145}, {79, 218}, {78, 219}, {77, 216}, {76, 217}, {71, 210}, {70, 211}, {69, 208}, {68, 209}, {5, 144}, {6, 147}, {7, 146}, {12, 153}, {13, 152}, {14, 155}, {15, 154}, {36, 177}, {37, 176}, {38, 179}, {39, 178}, {44, 185}, {45, 184}, {46, 187}, {47, 186}, {100, 241}, {101, 240}, {102, 243}, {103, 242}, {108, 249}, {109, 248}, {110, 251}, {111, 250}, {5, 146}, {78, 217}, {77, 218}, {70, 209}, {69, 210}, {6, 145}, {13, 154}, {14, 153}, {37, 178}, {38, 177}, {45, 186}, {46, 185}, {101, 242}, {102, 241}, {109, 250}, {110, 249}, {8, 147}, {76, 215}, {72, 211}, {12, 151}, {40, 179}, {44, 183}, {104, 243}, {108, 247}, {8, 149}, {75, 214}, {74, 215}, {73, 212}, {72, 213}, {9, 148}, {10, 151}, {11, 150}, {40, 181}, {41, 180}, {42, 183}, {43, 182}, {104, 245}, {105, 244}, {106, 247}, {107, 246}, {9, 150}, {74, 213}, {73, 214}, {10, 149}, {41, 182}, {42, 181}, {105, 246}, {106, 245}, {19, 160}, {83, 224}, {23, 164}, {27, 168}, {31, 172}, {87, 228}, {91, 232}, {95, 236}, {20, 161}, {86, 227}, {85, 224}, {84, 225}, {21, 160}, {22, 163}, {23, 162}, {28, 169}, {29, 168}, {30, 171}, {31, 170}, {87, 226}, {92, 233}, {93, 232}, {94, 235}, {95, 234}, {21, 162}, {86, 225}, {85, 226}, {22, 161}, {29, 170}, {30, 169}, {93, 234}, {94, 233}, {24, 163}, {28, 167}, {88, 227}, {92, 231}, {24, 165}, {25, 164}, {26, 167}, {27, 166}, {88, 229}, {89, 228}, {90, 231}, {91, 230}, {25, 166}, {26, 165}, {89, 230}, {90, 229}, {51, 192}, {63, 204}, {59, 200}, {55, 196}, {52, 193}, {63, 202}, {62, 203}, {61, 200}, {60, 201}, {55, 194}, {54, 195}, {53, 192}, {53, 194}, {62, 201}, {61, 202}, {54, 193}, {56, 195}, {60, 199}, {56, 197}, {59, 198}, {58, 199}, {57, 196}, {57, 198}, {58, 197}, {127, 128}, {1, 280}, {115, 256}, {119, 260}, {123, 264}, {127, 268}, {116, 257}, {117, 256}, {118, 259}, {119, 258}, {124, 265}, {125, 264}, {126, 267}, {127, 266}, {117, 258}, {118, 257}, {125, 266}, {126, 265}, {120, 259}, {124, 263}, {120, 261}, {121, 260}, {122, 263}, {123, 262}, {121, 262}, {122, 261}, {128, 267}, {132, 271}, {128, 269}, {129, 268}, {130, 271}, {131, 270}, {129, 270}, {130, 269}, {131, 272}, {135, 276}, {139, 280}, {132, 273}, {133, 272}, {134, 275}, {135, 274}, {141, 280}, {133, 274}, {134, 273}, {136, 275}, {140, 279}, {136, 277}, {137, 276}, {138, 279}, {139, 278}, {137, 278}, {138, 277}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (13, 153)
b: (46, 186)
c: (110, 250)
d: (77, 217)
e: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140)(141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280)
f: (32, 172)
g: (96, 236)
h: (30, 170)
m: (94, 234)
n1: (16, 156)
a1: (47, 187)
b1: (111, 251)
c1: (80, 220)
d1: (12, 152)
e1: (122, 262)
f1: (43, 183)
g1: (107, 247)
h1: (76, 216)
m1: (120, 260)
n2: (59, 199)
a2: (24, 164)
b2: (88, 228)
c2: (6, 146)
d2: (37, 177)
e2: (101, 241)
f2: (70, 210)
g2: (130, 270)
h2: (56, 196)
m2: (125, 265)
n3: (133, 273)
a3: (131, 271)
b3: (44, 184)
c3: (108, 248)
d3: (11, 151)
e3: (75, 215)
f3: (19, 159)
g3: (52, 192)
h3: (116, 256)
m3: (83, 223)
n4: (17, 157)
a4: (38, 178)
b4: (102, 242)
c4: (5, 145)
d4: (50, 190)
e4: (114, 254)
f4: (81, 221)
g4: (8, 148)
h4: (103, 243)
m4: (39, 179)
n5: (72, 212)
a5: (62, 202)
b5: (18, 158)
c5: (49, 189)
d5: (113, 253)
e5: (82, 222)
f5: (121, 261)
g5: (124, 264)
h5: (129, 269)
m5: (53, 193)
n6: (134, 274)
a6: (137, 277)
b6: (132, 272)
c6: (97, 237)
d6: (33, 173)
e6: (66, 206)
f6: (2, 142)
g6: (14, 154)
h6: (45, 185)
m6: (109, 249)
n7: (78, 218)
a7: (26, 166)
b7: (90, 230)
c7: (2, 140)(3, 139)(4, 138)(5, 137)(6, 136)(7, 135)(8, 134)(9, 133)(10, 132)(11, 131)(12, 130)(13, 129)(14, 128)(15, 127)(16, 126)(17, 125)(18, 124)(19, 123)(20, 122)(21, 121)(22, 120)(23, 119)(24, 118)(25, 117)(26, 116)(27, 115)(28, 114)(29, 113)(30, 112)(31, 111)(32, 110)(33, 109)(34, 108)(35, 107)(36, 106)(37, 105)(38, 104)(39, 103)(40, 102)(41, 101)(42, 100)(43, 99)(44, 98)(45, 97)(46, 96)(47, 95)(48, 94)(49, 93)(50, 92)(51, 91)(52, 90)(53, 89)(54, 88)(55, 87)(56, 86)(57, 85)(58, 84)(59, 83)(60, 82)(61, 81)(62, 80)(63, 79)(64, 78)(65, 77)(66, 76)(67, 75)(68, 74)(69, 73)(70, 72)(142, 280)(143, 279)(144, 278)(145, 277)(146, 276)(147, 275)(148, 274)(149, 273)(150, 272)(151, 271)(152, 270)(153, 269)(154, 268)(155, 267)(156, 266)(157, 265)(158, 264)(159, 263)(160, 262)(161, 261)(162, 260)(163, 259)(164, 258)(165, 257)(166, 256)(167, 255)(168, 254)(169, 253)(170, 252)(171, 251)(172, 250)(173, 249)(174, 248)(175, 247)(176, 246)(177, 245)(178, 244)(179, 243)(180, 242)(181, 241)(182, 240)(183, 239)(184, 238)(185, 237)(186, 236)(187, 235)(188, 234)(189, 233)(190, 232)(191, 231)(192, 230)(193, 229)(194, 228)(195, 227)(196, 226)(197, 225)(198, 224)(199, 223)(200, 222)(201, 221)(202, 220)(203, 219)(204, 218)(205, 217)(206, 216)(207, 215)(208, 214)(209, 213)(210, 212)
d7: (63, 203)
e7: (140, 280)
f7: (64, 204)
g7: (128, 268)
h7: (135, 275)
m7: (55, 195)
n8: (22, 162)
a8: (86, 226)
b8: (60, 200)
c8: (21, 161)
d8: (138, 278)
e8: (85, 225)
f8: (136, 276)
g8: (29, 169)
h8: (93, 233)
m8: (57, 197)
n9: (118, 258)
a9: (127, 267)
b9: (119, 259)
c9: (23, 163)
d9: (87, 227)
e9: (15, 155)
f9: (48, 188)
g9: (112, 252)
h9: (79, 219)
m9: (10, 150)
n10: (105, 245)
a10: (41, 181)
b10: (74, 214)
c10: (28, 168)
d10: (92, 232)
e10: (3, 143)
f10: (36, 176)
g10: (100, 240)
h10: (67, 207)
m10: (139, 279)
n11: (106, 246)
a11: (42, 182)
b11: (9, 149)
c11: (73, 213)
d11: (123, 263)
e11: (54, 194)
f11: (58, 198)
g11: (7, 147)
h11: (104, 244)
m11: (40, 180)
n12: (71, 211)
a12: (61, 201)
b12: (25, 165)
c12: (89, 229)
d12: (126, 266)
e12: (27, 167)
f12: (91, 231)
g12: (117, 257)
h12: (31, 171)
m12: (95, 235)
n13: (4, 144)
a13: (99, 239)
b13: (35, 175)
c13: (68, 208)
d13: (20, 160)
e13: (84, 224)
f13: (51, 191)
g13: (115, 255)
h13: (34, 174)
m13: (98, 238)
n14: (65, 205)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 280, 1 ]
280
-1 2 280 140 142
-2 143 1 3 141
-3 144 2 4 142
-4 143 145 3 5
-5 144 146 4 6
-6 145 147 5 7
-7 146 148 6 8
-8 147 149 7 9
-9 148 150 8 10
-10 11 149 151 9
-11 12 150 152 10
-12 11 13 151 153
-13 154 12 14 152
-14 155 13 15 153
-15 154 156 14 16
-16 155 157 15 17
-17 156 158 16 18
-18 157 159 17 19
-19 158 160 18 20
-20 159 161 19 21
-21 22 160 162 20
-22 23 161 163 21
-23 22 24 162 164
-24 165 23 25 163
-25 166 24 26 164
-26 165 167 25 27
-27 166 168 26 28
-28 167 169 27 29
-29 168 170 28 30
-30 169 171 29 31
-31 170 172 30 32
-32 33 171 173 31
-33 34 172 174 32
-34 33 35 173 175
-35 176 34 36 174
-36 177 35 37 175
-37 176 178 36 38
-38 177 179 37 39
-39 178 180 38 40
-40 179 181 39 41
-41 180 182 40 42
-42 181 183 41 43
-43 44 182 184 42
-44 45 183 185 43
-45 44 46 184 186
-46 187 45 47 185
-47 188 46 48 186
-48 187 189 47 49
-49 188 190 48 50
-50 189 191 49 51
-51 190 192 50 52
-52 191 193 51 53
-53 192 194 52 54
-54 55 193 195 53
-55 56 194 196 54
-56 55 57 195 197
-57 198 56 58 196
-58 199 57 59 197
-59 198 200 58 60
-60 199 201 59 61
-61 200 202 60 62
-62 201 203 61 63
-63 202 204 62 64
-64 203 205 63 65
-65 66 204 206 64
-66 67 205 207 65
-67 66 68 206 208
-68 209 67 69 207
-69 210 68 70 208
-70 209 211 69 71
-71 210 212 70 72
-72 211 213 71 73
-73 212 214 72 74
-74 213 215 73 75
-75 214 216 74 76
-76 77 215 217 75
-77 78 216 218 76
-78 77 79 217 219
-79 220 78 80 218
-80 221 79 81 219
-81 220 222 80 82
-82 221 223 81 83
-83 222 224 82 84
-84 223 225 83 85
-85 224 226 84 86
-86 225 227 85 87
-87 88 226 228 86
-88 89 227 229 87
-89 88 90 228 230
-90 231 89 91 229
-91 232 90 92 230
-92 231 233 91 93
-93 232 234 92 94
-94 233 235 93 95
-95 234 236 94 96
-96 235 237 95 97
-97 236 238 96 98
-98 99 237 239 97
-99 100 238 240 98
-100 99 101 239 241
-101 242 100 102 240
-102 243 101 103 241
-103 242 244 102 104
-104 243 245 103 105
-105 244 246 104 106
-106 245 247 105 107
-107 246 248 106 108
-108 247 249 107 109
-109 110 248 250 108
-110 111 249 251 109
-111 110 112 250 252
-112 253 111 113 251
-113 254 112 114 252
-114 253 255 113 115
-115 254 256 114 116
-116 255 257 115 117
-117 256 258 116 118
-118 257 259 117 119
-119 258 260 118 120
-120 121 259 261 119
-121 122 260 262 120
-122 121 123 261 263
-123 264 122 124 262
-124 265 123 125 263
-125 264 266 124 126
-126 265 267 125 127
-127 266 268 126 128
-128 267 269 127 129
-129 268 270 128 130
-130 269 271 129 131
-131 132 270 272 130
-132 133 271 273 131
-133 132 134 272 274
-134 275 133 135 273
-135 276 134 136 274
-136 275 277 135 137
-137 276 278 136 138
-138 277 279 137 139
-139 278 280 138 140
-140 1 279 139 141
-141 2 280 140 142
-142 143 1 3 141
-143 144 2 4 142
-144 143 145 3 5
-145 144 146 4 6
-146 145 147 5 7
-147 146 148 6 8
-148 147 149 7 9
-149 148 150 8 10
-150 11 149 151 9
-151 12 150 152 10
-152 11 13 151 153
-153 154 12 14 152
-154 155 13 15 153
-155 154 156 14 16
-156 155 157 15 17
-157 156 158 16 18
-158 157 159 17 19
-159 158 160 18 20
-160 159 161 19 21
-161 22 160 162 20
-162 23 161 163 21
-163 22 24 162 164
-164 165 23 25 163
-165 166 24 26 164
-166 165 167 25 27
-167 166 168 26 28
-168 167 169 27 29
-169 168 170 28 30
-170 169 171 29 31
-171 170 172 30 32
-172 33 171 173 31
-173 34 172 174 32
-174 33 35 173 175
-175 176 34 36 174
-176 177 35 37 175
-177 176 178 36 38
-178 177 179 37 39
-179 178 180 38 40
-180 179 181 39 41
-181 180 182 40 42
-182 181 183 41 43
-183 44 182 184 42
-184 45 183 185 43
-185 44 46 184 186
-186 187 45 47 185
-187 188 46 48 186
-188 187 189 47 49
-189 188 190 48 50
-190 189 191 49 51
-191 190 192 50 52
-192 191 193 51 53
-193 192 194 52 54
-194 55 193 195 53
-195 56 194 196 54
-196 55 57 195 197
-197 198 56 58 196
-198 199 57 59 197
-199 198 200 58 60
-200 199 201 59 61
-201 200 202 60 62
-202 201 203 61 63
-203 202 204 62 64
-204 203 205 63 65
-205 66 204 206 64
-206 67 205 207 65
-207 66 68 206 208
-208 209 67 69 207
-209 210 68 70 208
-210 209 211 69 71
-211 210 212 70 72
-212 211 213 71 73
-213 212 214 72 74
-214 213 215 73 75
-215 214 216 74 76
-216 77 215 217 75
-217 78 216 218 76
-218 77 79 217 219
-219 220 78 80 218
-220 221 79 81 219
-221 220 222 80 82
-222 221 223 81 83
-223 222 224 82 84
-224 223 225 83 85
-225 224 226 84 86
-226 225 227 85 87
-227 88 226 228 86
-228 89 227 229 87
-229 88 90 228 230
-230 231 89 91 229
-231 232 90 92 230
-232 231 233 91 93
-233 232 234 92 94
-234 233 235 93 95
-235 234 236 94 96
-236 235 237 95 97
-237 236 238 96 98
-238 99 237 239 97
-239 100 238 240 98
-240 99 101 239 241
-241 242 100 102 240
-242 243 101 103 241
-243 242 244 102 104
-244 243 245 103 105
-245 244 246 104 106
-246 245 247 105 107
-247 246 248 106 108
-248 247 249 107 109
-249 110 248 250 108
-250 111 249 251 109
-251 110 112 250 252
-252 253 111 113 251
-253 254 112 114 252
-254 253 255 113 115
-255 254 256 114 116
-256 255 257 115 117
-257 256 258 116 118
-258 257 259 117 119
-259 258 260 118 120
-260 121 259 261 119
-261 122 260 262 120
-262 121 123 261 263
-263 264 122 124 262
-264 265 123 125 263
-265 264 266 124 126
-266 265 267 125 127
-267 266 268 126 128
-268 267 269 127 129
-269 268 270 128 130
-270 269 271 129 131
-271 132 270 272 130
-272 133 271 273 131
-273 132 134 272 274
-274 275 133 135 273
-275 276 134 136 274
-276 275 277 135 137
-277 276 278 136 138
-278 277 279 137 139
-279 278 280 138 140
-280 1 279 139 141
0

**************