C4graphGraph forms for C4 [ 280, 19 ] = PL(MSY(4,35,6,0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 280, 19 ] = PL(MSY(4,35,6,0)).

(I) Following is a form readable by MAGMA:

g:=Graph<280|{ {128, 225}, {128, 228}, {129, 229}, {128, 229}, {128, 232}, {129, 233}, {129, 232}, {130, 233}, {129, 236}, {130, 236}, {131, 237}, {130, 237}, {132, 244}, {133, 245}, {132, 245}, {130, 240}, {131, 241}, {131, 240}, {132, 241}, {131, 244}, {133, 252}, {134, 252}, {135, 253}, {134, 253}, {132, 248}, {133, 249}, {133, 248}, {134, 249}, {43, 171}, {32, 161}, {43, 170}, {32, 162}, {105, 235}, {45, 175}, {44, 174}, {44, 175}, {104, 235}, {45, 174}, {25, 157}, {104, 236}, {26, 158}, {99, 231}, {98, 231}, {105, 236}, {44, 170}, {25, 158}, {44, 171}, {26, 157}, {42, 162}, {87, 223}, {19, 154}, {42, 163}, {73, 192}, {86, 223}, {19, 153}, {48, 186}, {41, 163}, {74, 192}, {81, 219}, {98, 232}, {41, 162}, {48, 187}, {79, 196}, {80, 219}, {99, 232}, {1, 141}, {43, 167}, {42, 166}, {2, 142}, {79, 195}, {80, 220}, {20, 153}, {43, 166}, {42, 167}, {81, 220}, {20, 154}, {49, 191}, {48, 190}, {1, 142}, {49, 190}, {48, 191}, {2, 141}, {91, 203}, {92, 204}, {86, 199}, {74, 216}, {85, 199}, {75, 216}, {80, 195}, {47, 187}, {80, 196}, {7, 146}, {47, 186}, {7, 145}, {91, 204}, {92, 203}, {13, 149}, {47, 183}, {46, 182}, {33, 185}, {14, 150}, {8, 145}, {47, 182}, {46, 183}, {32, 185}, {8, 146}, {32, 186}, {13, 150}, {127, 228}, {33, 186}, {14, 149}, {100, 255}, {46, 178}, {75, 215}, {99, 255}, {46, 179}, {74, 215}, {85, 200}, {45, 179}, {127, 225}, {126, 224}, {86, 200}, {45, 178}, {127, 224}, {9, 169}, {14, 174}, {87, 247}, {88, 248}, {8, 169}, {125, 220}, {15, 174}, {82, 243}, {93, 252}, {8, 170}, {127, 221}, {126, 220}, {15, 173}, {81, 243}, {94, 252}, {9, 170}, {126, 221}, {14, 173}, {76, 239}, {2, 166}, {125, 217}, {124, 216}, {21, 177}, {75, 239}, {3, 166}, {125, 216}, {20, 177}, {81, 244}, {94, 251}, {3, 165}, {20, 178}, {82, 244}, {93, 251}, {2, 165}, {126, 217}, {21, 178}, {124, 212}, {125, 213}, {124, 213}, {36, 142}, {123, 209}, {122, 208}, {37, 143}, {36, 143}, {123, 208}, {37, 142}, {26, 182}, {27, 182}, {124, 209}, {98, 207}, {27, 181}, {97, 207}, {26, 181}, {123, 212}, {87, 248}, {88, 247}, {38, 150}, {121, 201}, {120, 200}, {39, 151}, {38, 151}, {121, 200}, {39, 150}, {97, 208}, {40, 154}, {98, 208}, {40, 155}, {122, 201}, {119, 196}, {103, 212}, {38, 146}, {103, 211}, {38, 147}, {121, 204}, {37, 147}, {123, 205}, {122, 204}, {119, 193}, {118, 192}, {41, 159}, {40, 158}, {86, 224}, {37, 146}, {122, 205}, {119, 192}, {41, 158}, {40, 159}, {87, 224}, {92, 228}, {4, 189}, {120, 193}, {93, 228}, {4, 190}, {64, 250}, {64, 251}, {104, 211}, {75, 240}, {39, 155}, {121, 197}, {120, 196}, {104, 212}, {76, 240}, {3, 190}, {120, 197}, {39, 154}, {31, 162}, {3, 189}, {64, 254}, {31, 161}, {65, 255}, {93, 227}, {64, 255}, {65, 254}, {92, 227}, {95, 159}, {117, 181}, {116, 180}, {96, 160}, {90, 155}, {116, 181}, {101, 164}, {89, 155}, {115, 177}, {114, 176}, {102, 164}, {84, 151}, {115, 176}, {63, 251}, {83, 151}, {63, 250}, {116, 177}, {102, 163}, {89, 156}, {90, 156}, {101, 163}, {72, 143}, {115, 180}, {9, 193}, {63, 247}, {62, 246}, {34, 234}, {10, 194}, {71, 143}, {15, 198}, {117, 188}, {63, 246}, {62, 247}, {35, 234}, {15, 197}, {119, 189}, {118, 188}, {35, 233}, {9, 194}, {118, 189}, {111, 164}, {34, 233}, {10, 193}, {83, 152}, {17, 221}, {117, 185}, {116, 184}, {62, 242}, {84, 152}, {16, 221}, {117, 184}, {62, 243}, {16, 222}, {111, 161}, {110, 160}, {61, 243}, {17, 222}, {118, 185}, {111, 160}, {61, 242}, {5, 213}, {59, 235}, {10, 218}, {4, 213}, {112, 161}, {59, 234}, {28, 205}, {11, 218}, {4, 214}, {61, 239}, {60, 238}, {28, 206}, {11, 217}, {5, 214}, {61, 238}, {60, 239}, {10, 217}, {112, 164}, {113, 165}, {16, 197}, {112, 165}, {27, 206}, {16, 198}, {60, 234}, {27, 205}, {97, 183}, {60, 235}, {71, 144}, {96, 183}, {58, 226}, {113, 169}, {112, 168}, {72, 144}, {96, 184}, {58, 227}, {113, 168}, {77, 148}, {97, 184}, {57, 227}, {102, 188}, {78, 148}, {57, 226}, {114, 169}, {103, 188}, {21, 201}, {103, 187}, {59, 231}, {58, 230}, {22, 202}, {58, 231}, {113, 172}, {102, 187}, {59, 230}, {78, 147}, {77, 147}, {115, 173}, {114, 172}, {21, 202}, {114, 173}, {22, 201}, {29, 253}, {55, 215}, {54, 214}, {30, 254}, {72, 168}, {24, 249}, {55, 214}, {54, 215}, {73, 168}, {24, 250}, {56, 218}, {78, 172}, {29, 254}, {56, 219}, {30, 253}, {79, 172}, {17, 245}, {54, 210}, {18, 246}, {79, 171}, {84, 176}, {54, 211}, {78, 171}, {85, 176}, {53, 211}, {107, 141}, {57, 223}, {56, 222}, {17, 246}, {106, 141}, {57, 222}, {56, 223}, {53, 210}, {18, 245}, {5, 237}, {6, 238}, {91, 179}, {90, 179}, {5, 238}, {6, 237}, {55, 219}, {23, 250}, {55, 218}, {23, 249}, {73, 167}, {90, 180}, {72, 167}, {91, 180}, {33, 209}, {50, 194}, {34, 210}, {50, 195}, {109, 156}, {49, 195}, {111, 157}, {110, 156}, {33, 210}, {110, 157}, {49, 194}, {34, 209}, {22, 226}, {109, 153}, {108, 152}, {51, 199}, {50, 198}, {23, 226}, {109, 152}, {51, 198}, {50, 199}, {74, 191}, {23, 225}, {73, 191}, {22, 225}, {110, 153}, {29, 229}, {109, 149}, {108, 148}, {51, 203}, {11, 242}, {108, 149}, {51, 202}, {28, 229}, {11, 241}, {107, 145}, {106, 144}, {53, 207}, {52, 206}, {28, 230}, {85, 175}, {29, 230}, {107, 144}, {53, 206}, {52, 207}, {84, 175}, {12, 241}, {108, 145}, {12, 242}, {52, 202}, {52, 203}, {107, 148}, {95, 160}, {96, 159}, {1, 257}, {6, 262}, {7, 262}, {7, 261}, {1, 258}, {6, 261}, {13, 265}, {12, 265}, {12, 266}, {13, 266}, {25, 273}, {30, 278}, {24, 273}, {31, 278}, {24, 274}, {31, 277}, {25, 274}, {30, 277}, {18, 270}, {19, 270}, {19, 269}, {18, 269}, {35, 258}, {35, 257}, {36, 278}, {36, 279}, {66, 258}, {66, 259}, {65, 259}, {65, 258}, {71, 260}, {66, 262}, {67, 263}, {71, 259}, {76, 264}, {66, 263}, {67, 262}, {77, 264}, {67, 267}, {88, 272}, {67, 266}, {89, 272}, {68, 270}, {69, 271}, {77, 263}, {94, 276}, {68, 271}, {69, 270}, {76, 263}, {95, 276}, {95, 275}, {94, 275}, {68, 266}, {68, 267}, {70, 278}, {70, 279}, {70, 274}, {70, 275}, {69, 275}, {89, 271}, {69, 274}, {88, 271}, {83, 267}, {82, 267}, {82, 268}, {83, 268}, {99, 256}, {100, 256}, {105, 259}, {105, 260}, {101, 279}, {106, 280}, {100, 279}, {100, 280}, {101, 280}, {106, 277}, {136, 264}, {137, 265}, {137, 264}, {135, 260}, {138, 265}, {137, 268}, {134, 256}, {139, 269}, {138, 268}, {135, 257}, {135, 256}, {138, 269}, {136, 257}, {136, 260}, {137, 261}, {136, 261}, {140, 280}, {140, 276}, {140, 277}, {138, 272}, {139, 273}, {139, 272}, {140, 273}, {139, 276} }>;

(II) A more general form is to represent the graph as the orbit of {128, 225} under the group generated by the following permutations:

a: (1, 36)(2, 37)(3, 38)(4, 39)(5, 40)(6, 41)(7, 42)(8, 43)(9, 44)(10, 45)(11, 46)(12, 47)(13, 48)(14, 49)(15, 50)(16, 51)(17, 52)(18, 53)(19, 54)(20, 55)(21, 56)(22, 57)(23, 58)(24, 59)(25, 60)(26, 61)(27, 62)(28, 63)(29, 64)(30, 65)(31, 66)(32, 67)(33, 68)(34, 69)(35, 70)(71, 106)(72, 107)(73, 108)(74, 109)(75, 110)(76, 111)(77, 112)(78, 113)(79, 114)(80, 115)(81, 116)(82, 117)(83, 118)(84, 119)(85, 120)(86, 121)(87, 122)(88, 123)(89, 124)(90, 125)(91, 126)(92, 127)(93, 128)(94, 129)(95, 130)(96, 131)(97, 132)(98, 133)(99, 134)(100, 135)(101, 136)(102, 137)(103, 138)(104, 139)(105, 140)(141, 143)(145, 167)(146, 166)(147, 165)(148, 168)(149, 191)(150, 190)(151, 189)(152, 192)(153, 215)(154, 214)(155, 213)(156, 216)(157, 239)(158, 238)(159, 237)(160, 240)(161, 263)(162, 262)(163, 261)(164, 264)(169, 171)(173, 195)(174, 194)(175, 193)(176, 196)(177, 219)(178, 218)(179, 217)(180, 220)(181, 243)(182, 242)(183, 241)(184, 244)(185, 267)(186, 266)(187, 265)(188, 268)(197, 199)(201, 223)(202, 222)(203, 221)(204, 224)(205, 247)(206, 246)(207, 245)(208, 248)(209, 271)(210, 270)(211, 269)(212, 272)(225, 227)(229, 251)(230, 250)(231, 249)(232, 252)(233, 275)(234, 274)(235, 273)(236, 276)(253, 255)(257, 279)(258, 278)(259, 277)(260, 280)
b: (2, 35)(3, 34)(4, 33)(5, 32)(6, 31)(7, 30)(8, 29)(9, 28)(10, 27)(11, 26)(12, 25)(13, 24)(14, 23)(15, 22)(16, 21)(17, 20)(18, 19)(36, 66)(37, 65)(38, 64)(39, 63)(40, 62)(41, 61)(42, 60)(43, 59)(44, 58)(45, 57)(46, 56)(47, 55)(48, 54)(49, 53)(50, 52)(67, 70)(68, 69)(72, 105)(73, 104)(74, 103)(75, 102)(76, 101)(77, 100)(78, 99)(79, 98)(80, 97)(81, 96)(82, 95)(83, 94)(84, 93)(85, 92)(86, 91)(87, 90)(88, 89)(106, 136)(107, 135)(108, 134)(109, 133)(110, 132)(111, 131)(112, 130)(113, 129)(114, 128)(115, 127)(116, 126)(117, 125)(118, 124)(119, 123)(120, 122)(137, 140)(138, 139)(141, 257)(142, 258)(143, 259)(144, 260)(145, 253)(146, 254)(147, 255)(148, 256)(149, 249)(150, 250)(151, 251)(152, 252)(153, 245)(154, 246)(155, 247)(156, 248)(157, 241)(158, 242)(159, 243)(160, 244)(161, 237)(162, 238)(163, 239)(164, 240)(165, 233)(166, 234)(167, 235)(168, 236)(169, 229)(170, 230)(171, 231)(172, 232)(173, 225)(174, 226)(175, 227)(176, 228)(177, 221)(178, 222)(179, 223)(180, 224)(181, 217)(182, 218)(183, 219)(184, 220)(185, 213)(186, 214)(187, 215)(188, 216)(189, 209)(190, 210)(191, 211)(192, 212)(193, 205)(194, 206)(195, 207)(196, 208)(197, 201)(198, 202)(199, 203)(200, 204)(261, 277)(262, 278)(263, 279)(264, 280)(265, 273)(266, 274)(267, 275)(268, 276)
c: (36, 106)(37, 107)(38, 108)(39, 109)(40, 110)(41, 111)(42, 112)(43, 113)(44, 114)(45, 115)(46, 116)(47, 117)(48, 118)(49, 119)(50, 120)(51, 121)(52, 122)(53, 123)(54, 124)(55, 125)(56, 126)(57, 127)(58, 128)(59, 129)(60, 130)(61, 131)(62, 132)(63, 133)(64, 134)(65, 135)(66, 136)(67, 137)(68, 138)(69, 139)(70, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195, 196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211, 212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227, 228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)(241, 242)(243, 244)(245, 246)(247, 248)(249, 250)(251, 252)(253, 254)(255, 256)(257, 258)(259, 260)(261, 262)(263, 264)(265, 266)(267, 268)(269, 270)(271, 272)(273, 274)(275, 276)(277, 278)(279, 280)
d: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)(36, 42, 48, 54, 60, 66, 37, 43, 49, 55, 61, 67, 38, 44, 50, 56, 62, 68, 39, 45, 51, 57, 63, 69, 40, 46, 52, 58, 64, 70, 41, 47, 53, 59, 65)(71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105)(106, 112, 118, 124, 130, 136, 107, 113, 119, 125, 131, 137, 108, 114, 120, 126, 132, 138, 109, 115, 121, 127, 133, 139, 110, 116, 122, 128, 134, 140, 111, 117, 123, 129, 135)(141, 165, 189, 213, 237, 261, 145, 169, 193, 217, 241, 265, 149, 173, 197, 221, 245, 269, 153, 177, 201, 225, 249, 273, 157, 181, 205, 229, 253, 277, 161, 185, 209, 233, 257)(142, 166, 190, 214, 238, 262, 146, 170, 194, 218, 242, 266, 150, 174, 198, 222, 246, 270, 154, 178, 202, 226, 250, 274, 158, 182, 206, 230, 254, 278, 162, 186, 210, 234, 258)(143, 167, 191, 215, 239, 263, 147, 171, 195, 219, 243, 267, 151, 175, 199, 223, 247, 271, 155, 179, 203, 227, 251, 275, 159, 183, 207, 231, 255, 279, 163, 187, 211, 235, 259)(144, 168, 192, 216, 240, 264, 148, 172, 196, 220, 244, 268, 152, 176, 200, 224, 248, 272, 156, 180, 204, 228, 252, 276, 160, 184, 208, 232, 256, 280, 164, 188, 212, 236, 260)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 280, 19 ]
280
-1 257 258 141 142
-2 165 166 141 142
-3 165 166 189 190
-4 189 190 213 214
-5 213 214 237 238
-6 237 238 261 262
-7 145 146 261 262
-8 145 146 169 170
-9 169 170 193 194
-10 193 194 217 218
-11 242 217 218 241
-12 242 265 266 241
-13 265 266 149 150
-14 149 150 173 174
-15 198 173 174 197
-16 198 221 222 197
-17 221 222 245 246
-18 245 246 269 270
-19 154 269 270 153
-20 154 177 178 153
-21 177 178 201 202
-22 201 202 225 226
-23 225 226 249 250
-24 249 250 273 274
-25 157 158 273 274
-26 157 158 181 182
-27 181 182 205 206
-28 205 206 229 230
-29 253 254 229 230
-30 253 254 277 278
-31 277 278 161 162
-32 161 162 185 186
-33 209 210 185 186
-34 209 210 233 234
-35 233 234 257 258
-36 143 278 279 142
-37 143 146 147 142
-38 146 147 150 151
-39 154 155 150 151
-40 154 155 158 159
-41 158 159 162 163
-42 166 167 162 163
-43 166 167 170 171
-44 170 171 174 175
-45 178 179 174 175
-46 178 179 182 183
-47 187 182 183 186
-48 187 190 191 186
-49 190 191 194 195
-50 198 199 194 195
-51 198 199 202 203
-52 202 203 206 207
-53 210 211 206 207
-54 210 211 214 215
-55 214 215 218 219
-56 222 223 218 219
-57 222 223 226 227
-58 231 226 227 230
-59 231 234 235 230
-60 234 235 238 239
-61 242 243 238 239
-62 242 243 246 247
-63 246 247 250 251
-64 254 255 250 251
-65 254 255 258 259
-66 258 259 262 263
-67 266 267 262 263
-68 266 267 270 271
-69 275 270 271 274
-70 275 278 279 274
-71 143 144 259 260
-72 143 144 167 168
-73 167 168 191 192
-74 191 192 215 216
-75 215 216 239 240
-76 264 239 240 263
-77 264 147 148 263
-78 147 148 171 172
-79 171 172 195 196
-80 220 195 196 219
-81 220 243 244 219
-82 243 244 267 268
-83 267 268 151 152
-84 176 151 152 175
-85 176 199 200 175
-86 199 200 223 224
-87 223 224 247 248
-88 247 248 271 272
-89 155 156 271 272
-90 155 156 179 180
-91 179 180 203 204
-92 203 204 227 228
-93 227 228 251 252
-94 275 276 251 252
-95 275 276 159 160
-96 159 160 183 184
-97 183 184 207 208
-98 231 232 207 208
-99 231 232 255 256
-100 255 256 279 280
-101 279 280 163 164
-102 187 188 163 164
-103 187 188 211 212
-104 211 212 235 236
-105 235 236 259 260
-106 144 277 280 141
-107 144 145 148 141
-108 145 148 149 152
-109 156 149 152 153
-110 156 157 160 153
-111 157 160 161 164
-112 165 168 161 164
-113 165 168 169 172
-114 176 169 172 173
-115 176 177 180 173
-116 177 180 181 184
-117 188 181 184 185
-118 188 189 192 185
-119 189 192 193 196
-120 200 193 196 197
-121 200 201 204 197
-122 201 204 205 208
-123 209 212 205 208
-124 209 212 213 216
-125 220 213 216 217
-126 220 221 224 217
-127 221 224 225 228
-128 232 225 228 229
-129 232 233 236 229
-130 233 236 237 240
-131 244 237 240 241
-132 244 245 248 241
-133 245 248 249 252
-134 253 256 249 252
-135 253 256 257 260
-136 264 257 260 261
-137 264 265 268 261
-138 265 268 269 272
-139 276 269 272 273
-140 276 277 280 273
-141 1 2 106 107
-142 1 2 36 37
-143 36 37 71 72
-144 71 72 106 107
-145 7 8 107 108
-146 37 38 7 8
-147 77 78 37 38
-148 77 78 107 108
-149 13 14 108 109
-150 13 14 38 39
-151 38 39 83 84
-152 83 84 108 109
-153 110 19 20 109
-154 39 40 19 20
-155 89 90 39 40
-156 110 89 90 109
-157 110 111 25 26
-158 25 26 40 41
-159 40 95 41 96
-160 110 111 95 96
-161 111 112 31 32
-162 41 31 42 32
-163 101 102 41 42
-164 111 101 112 102
-165 2 112 3 113
-166 2 3 42 43
-167 72 73 42 43
-168 112 113 72 73
-169 113 114 8 9
-170 44 8 9 43
-171 44 78 79 43
-172 78 79 113 114
-173 14 15 114 115
-174 44 45 14 15
-175 44 45 84 85
-176 114 115 84 85
-177 115 116 20 21
-178 45 46 20 21
-179 45 46 90 91
-180 90 91 115 116
-181 26 27 116 117
-182 46 47 26 27
-183 46 47 96 97
-184 116 117 96 97
-185 33 117 118 32
-186 33 47 48 32
-187 47 102 48 103
-188 102 103 117 118
-189 3 4 118 119
-190 3 4 48 49
-191 48 49 73 74
-192 73 74 118 119
-193 9 119 10 120
-194 49 50 9 10
-195 79 80 49 50
-196 79 80 119 120
-197 121 15 16 120
-198 15 16 50 51
-199 50 51 85 86
-200 121 85 86 120
-201 22 121 122 21
-202 22 51 52 21
-203 91 92 51 52
-204 121 122 91 92
-205 122 123 27 28
-206 27 28 52 53
-207 52 53 97 98
-208 122 123 97 98
-209 33 34 123 124
-210 33 34 53 54
-211 103 104 53 54
-212 123 124 103 104
-213 124 4 125 5
-214 55 4 5 54
-215 55 74 75 54
-216 124 125 74 75
-217 11 125 126 10
-218 11 55 56 10
-219 55 56 80 81
-220 80 81 125 126
-221 16 126 17 127
-222 56 57 16 17
-223 56 57 86 87
-224 126 127 86 87
-225 22 23 127 128
-226 22 23 57 58
-227 57 58 92 93
-228 92 93 127 128
-229 28 29 128 129
-230 58 59 28 29
-231 99 58 59 98
-232 99 128 129 98
-233 34 35 129 130
-234 34 35 59 60
-235 59 60 104 105
-236 104 105 129 130
-237 5 6 130 131
-238 5 60 6 61
-239 60 61 75 76
-240 75 130 76 131
-241 11 132 12 131
-242 11 12 61 62
-243 81 82 61 62
-244 132 81 82 131
-245 132 133 17 18
-246 17 18 62 63
-247 88 62 63 87
-248 88 132 133 87
-249 23 133 24 134
-250 23 24 63 64
-251 93 94 63 64
-252 133 134 93 94
-253 134 135 29 30
-254 29 30 64 65
-255 99 100 64 65
-256 99 100 134 135
-257 1 35 135 136
-258 66 1 35 65
-259 66 71 105 65
-260 135 136 71 105
-261 136 137 6 7
-262 66 67 6 7
-263 66 77 67 76
-264 77 136 137 76
-265 12 13 137 138
-266 12 67 13 68
-267 67 68 82 83
-268 82 137 83 138
-269 138 18 139 19
-270 68 69 18 19
-271 88 89 68 69
-272 88 89 138 139
-273 24 25 139 140
-274 24 25 69 70
-275 69 70 94 95
-276 94 95 139 140
-277 106 30 140 31
-278 36 70 30 31
-279 100 101 36 70
-280 100 101 106 140
0

**************