C4graphGraph forms for C4 [ 280, 22 ] = PL(Curtain_35(1,6,29,34,35),[4^35,14^10])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 280, 22 ] = PL(Curtain_35(1,6,29,34,35),[4^35,14^10]).

(I) Following is a form readable by MAGMA:

g:=Graph<280|{ {133, 148}, {134, 148}, {139, 159}, {136, 157}, {138, 159}, {140, 148}, {138, 147}, {133, 159}, {132, 159}, {135, 154}, {139, 148}, {135, 164}, {129, 164}, {130, 164}, {129, 169}, {138, 160}, {136, 164}, {130, 172}, {139, 165}, {128, 176}, {137, 184}, {132, 182}, {131, 182}, {139, 190}, {134, 177}, {129, 187}, {135, 187}, {138, 182}, {137, 182}, {136, 192}, {129, 203}, {128, 205}, {132, 201}, {130, 204}, {133, 213}, {137, 217}, {136, 217}, {137, 216}, {132, 210}, {131, 217}, {130, 217}, {133, 222}, {131, 224}, {131, 233}, {135, 240}, {134, 251}, {24, 152}, {107, 235}, {60, 188}, {57, 185}, {53, 181}, {45, 173}, {39, 167}, {71, 199}, {76, 204}, {45, 172}, {110, 239}, {46, 175}, {95, 222}, {19, 145}, {109, 239}, {103, 229}, {65, 194}, {85, 214}, {8, 141}, {43, 174}, {43, 173}, {111, 233}, {49, 183}, {73, 207}, {78, 201}, {79, 200}, {49, 185}, {61, 181}, {52, 188}, {70, 206}, {114, 251}, {5, 143}, {107, 225}, {37, 175}, {87, 220}, {123, 240}, {105, 226}, {73, 197}, {107, 231}, {94, 210}, {1, 143}, {52, 186}, {51, 189}, {89, 215}, {25, 150}, {111, 224}, {103, 232}, {39, 168}, {75, 196}, {5, 149}, {51, 163}, {37, 181}, {36, 180}, {6, 150}, {71, 215}, {4, 149}, {62, 175}, {61, 172}, {83, 194}, {94, 204}, {121, 235}, {11, 152}, {124, 239}, {77, 222}, {81, 197}, {123, 239}, {106, 254}, {55, 162}, {59, 174}, {67, 214}, {102, 241}, {33, 185}, {108, 244}, {36, 188}, {98, 251}, {12, 150}, {79, 213}, {82, 200}, {14, 149}, {104, 243}, {65, 218}, {21, 142}, {10, 150}, {46, 178}, {19, 143}, {67, 223}, {16, 141}, {95, 194}, {76, 210}, {98, 252}, {10, 149}, {115, 236}, {104, 247}, {55, 168}, {76, 211}, {6, 166}, {113, 209}, {29, 189}, {21, 180}, {119, 214}, {112, 209}, {101, 196}, {57, 155}, {112, 210}, {110, 204}, {16, 179}, {61, 158}, {25, 186}, {69, 230}, {2, 166}, {113, 213}, {30, 186}, {77, 233}, {3, 166}, {125, 216}, {59, 158}, {77, 232}, {82, 244}, {109, 203}, {102, 192}, {99, 197}, {1, 166}, {63, 152}, {51, 155}, {77, 229}, {88, 240}, {67, 234}, {111, 198}, {96, 201}, {97, 200}, {16, 186}, {36, 142}, {75, 224}, {80, 251}, {15, 163}, {27, 183}, {80, 252}, {100, 200}, {34, 143}, {117, 216}, {79, 226}, {63, 145}, {127, 209}, {121, 215}, {80, 254}, {113, 222}, {126, 209}, {3, 179}, {81, 225}, {91, 235}, {6, 183}, {93, 236}, {16, 162}, {127, 205}, {34, 145}, {64, 244}, {116, 192}, {66, 246}, {97, 213}, {99, 215}, {18, 167}, {102, 211}, {70, 240}, {112, 198}, {74, 252}, {81, 231}, {95, 233}, {4, 179}, {117, 194}, {97, 214}, {12, 180}, {126, 198}, {66, 250}, {64, 248}, {35, 155}, {22, 175}, {112, 201}, {68, 253}, {78, 247}, {42, 144}, {8, 179}, {125, 198}, {25, 162}, {24, 163}, {8, 180}, {124, 192}, {113, 205}, {44, 144}, {27, 167}, {10, 183}, {48, 141}, {72, 245}, {76, 241}, {78, 243}, {83, 238}, {93, 224}, {29, 163}, {47, 145}, {103, 216}, {114, 205}, {3, 195}, {15, 207}, {41, 232}, {127, 190}, {18, 208}, {121, 187}, {114, 176}, {110, 172}, {103, 165}, {39, 229}, {38, 228}, {41, 234}, {114, 177}, {91, 152}, {95, 156}, {5, 193}, {121, 189}, {111, 171}, {109, 169}, {58, 254}, {48, 244}, {35, 231}, {27, 223}, {89, 157}, {93, 153}, {15, 202}, {125, 184}, {110, 171}, {22, 211}, {102, 160}, {4, 195}, {109, 170}, {105, 174}, {74, 141}, {89, 158}, {2, 202}, {119, 191}, {48, 248}, {36, 236}, {7, 207}, {20, 221}, {119, 190}, {58, 243}, {56, 241}, {85, 156}, {87, 158}, {99, 170}, {11, 193}, {83, 153}, {1, 202}, {115, 184}, {41, 226}, {31, 211}, {48, 252}, {45, 225}, {91, 151}, {7, 202}, {43, 230}, {18, 223}, {101, 168}, {85, 155}, {14, 193}, {56, 247}, {33, 238}, {88, 151}, {30, 206}, {117, 165}, {107, 187}, {18, 195}, {123, 170}, {57, 232}, {22, 199}, {21, 196}, {70, 151}, {96, 177}, {8, 218}, {55, 229}, {40, 250}, {42, 254}, {116, 160}, {63, 235}, {68, 144}, {32, 245}, {11, 221}, {125, 171}, {12, 218}, {70, 144}, {100, 178}, {7, 208}, {124, 171}, {105, 190}, {42, 253}, {37, 242}, {31, 199}, {65, 153}, {52, 236}, {24, 193}, {55, 238}, {42, 243}, {40, 241}, {32, 249}, {7, 221}, {127, 165}, {30, 196}, {71, 157}, {11, 208}, {57, 226}, {46, 245}, {21, 206}, {49, 237}, {108, 176}, {61, 225}, {101, 184}, {38, 248}, {126, 160}, {40, 246}, {73, 151}, {80, 142}, {97, 191}, {99, 189}, {40, 247}, {49, 238}, {67, 156}, {47, 207}, {59, 219}, {82, 178}, {28, 253}, {124, 157}, {123, 154}, {79, 174}, {1, 227}, {44, 206}, {33, 195}, {23, 245}, {15, 237}, {6, 228}, {75, 169}, {82, 176}, {75, 168}, {22, 242}, {106, 142}, {69, 161}, {88, 188}, {19, 246}, {119, 146}, {118, 147}, {62, 219}, {26, 255}, {5, 227}, {65, 167}, {3, 228}, {59, 220}, {44, 203}, {17, 249}, {122, 146}, {60, 212}, {69, 173}, {87, 191}, {72, 161}, {117, 156}, {115, 154}, {9, 227}, {115, 153}, {47, 197}, {45, 199}, {28, 246}, {71, 173}, {63, 212}, {85, 185}, {89, 181}, {126, 147}, {19, 253}, {23, 249}, {23, 248}, {51, 220}, {9, 249}, {43, 219}, {14, 255}, {33, 208}, {83, 162}, {13, 255}, {20, 230}, {17, 227}, {9, 250}, {23, 228}, {20, 231}, {93, 169}, {24, 237}, {46, 219}, {27, 237}, {41, 223}, {87, 161}, {13, 250}, {60, 203}, {29, 234}, {44, 212}, {69, 191}, {72, 178}, {9, 242}, {105, 146}, {104, 147}, {47, 212}, {29, 230}, {81, 170}, {90, 161}, {2, 255}, {39, 218}, {20, 234}, {108, 146}, {35, 221}, {13, 242}, {35, 220}, {78, 177}, {101, 154}, {4, 260}, {17, 272}, {2, 261}, {13, 266}, {26, 272}, {14, 261}, {10, 260}, {12, 259}, {31, 272}, {26, 266}, {26, 268}, {31, 263}, {28, 261}, {25, 259}, {28, 256}, {30, 258}, {17, 268}, {54, 278}, {56, 280}, {54, 276}, {37, 262}, {32, 260}, {53, 272}, {50, 280}, {62, 276}, {38, 266}, {34, 269}, {38, 276}, {54, 260}, {53, 263}, {50, 256}, {53, 262}, {56, 268}, {32, 278}, {62, 264}, {52, 258}, {50, 261}, {58, 269}, {34, 280}, {58, 257}, {54, 266}, {60, 257}, {50, 269}, {64, 259}, {86, 277}, {84, 275}, {73, 256}, {92, 278}, {92, 279}, {66, 270}, {84, 280}, {68, 265}, {92, 273}, {90, 276}, {72, 263}, {94, 270}, {66, 275}, {68, 277}, {90, 264}, {64, 279}, {86, 257}, {84, 268}, {94, 262}, {88, 257}, {84, 270}, {74, 273}, {86, 269}, {91, 256}, {74, 278}, {90, 263}, {86, 265}, {92, 259}, {98, 258}, {118, 277}, {108, 264}, {118, 274}, {106, 271}, {118, 275}, {98, 265}, {122, 273}, {100, 267}, {120, 279}, {120, 265}, {122, 267}, {116, 262}, {122, 264}, {96, 275}, {96, 277}, {100, 273}, {120, 271}, {104, 274}, {120, 258}, {116, 270}, {106, 279}, {140, 271}, {140, 267}, {134, 267}, {128, 271}, {128, 274}, {140, 274} }>;

(II) A more general form is to represent the graph as the orbit of {133, 148} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19)(8, 22)(10, 26)(11, 28)(12, 31)(15, 34)(16, 37)(18, 40)(20, 42)(21, 45)(24, 50)(25, 53)(27, 56)(29, 58)(30, 61)(32, 38)(33, 66)(35, 68)(36, 71)(39, 76)(41, 78)(43, 80)(44, 81)(46, 48)(49, 84)(51, 86)(52, 89)(55, 94)(57, 96)(59, 98)(60, 99)(62, 74)(63, 73)(64, 72)(65, 102)(67, 104)(69, 106)(70, 107)(75, 110)(77, 112)(79, 114)(83, 116)(85, 118)(87, 120)(88, 121)(90, 92)(93, 124)(95, 126)(97, 128)(100, 108)(101, 130)(103, 132)(105, 134)(115, 136)(117, 138)(119, 140)(123, 129)(125, 131)(127, 133)(141, 175)(142, 173)(143, 202)(144, 231)(145, 207)(146, 267)(147, 156)(148, 190)(149, 255)(150, 272)(151, 235)(152, 256)(153, 192)(154, 164)(155, 277)(157, 236)(158, 258)(159, 165)(160, 194)(161, 279)(162, 262)(163, 269)(166, 227)(167, 241)(168, 204)(169, 239)(170, 203)(171, 224)(172, 196)(174, 251)(176, 200)(177, 226)(178, 244)(179, 242)(180, 199)(181, 186)(182, 216)(183, 268)(184, 217)(185, 275)(187, 240)(188, 215)(189, 257)(191, 271)(193, 261)(195, 250)(197, 212)(198, 233)(201, 232)(205, 213)(206, 225)(208, 246)(209, 222)(210, 229)(211, 218)(214, 274)(219, 252)(220, 265)(221, 253)(223, 247)(228, 249)(230, 254)(234, 243)(237, 280)(238, 270)(245, 248)(259, 263)(260, 266)(264, 273)(276, 278)
b: (3, 6)(4, 10)(7, 15)(8, 12)(11, 24)(16, 25)(18, 27)(20, 29)(33, 49)(35, 51)(45, 71)(48, 64)(61, 89)(74, 92)(76, 102)(78, 104)(80, 106)(81, 99)(94, 116)(96, 118)(98, 120)(107, 121)(110, 124)(112, 126)(114, 128)(130, 136)(132, 138)(134, 140)(141, 259)(147, 201)(150, 179)(157, 172)(160, 210)(163, 221)(177, 274)(183, 195)(189, 231)(192, 204)(208, 237)(215, 225)(251, 271)(252, 279)
c: (9, 17)(13, 26)(19, 34)(21, 36)(22, 31)(28, 50)(30, 52)(37, 53)(39, 65)(40, 56)(41, 67)(42, 58)(43, 69)(44, 60)(46, 72)(55, 83)(57, 85)(59, 87)(62, 90)(66, 84)(68, 86)(70, 88)(75, 93)(77, 95)(79, 97)(101, 115)(103, 117)(105, 119)(144, 257)(153, 168)(156, 232)(161, 219)(174, 191)(175, 263)(188, 206)(194, 229)(196, 236)(214, 226)(242, 272)(246, 280)(250, 268)(253, 269)
d: (1, 3, 38, 64, 82, 114, 127, 126, 111, 110, 123, 99, 47, 7, 2, 6, 23, 48, 108, 128, 113, 112, 125, 124, 109, 81, 73, 15)(4, 54, 92, 100, 134, 139, 138, 131, 130, 135, 121, 63, 11, 14, 10, 32, 74, 122, 140, 133, 132, 137, 136, 129, 107, 91, 24, 5)(8, 62, 106, 79, 78, 103, 102, 75, 45, 70, 29, 19, 18, 13, 12, 46, 80, 105, 104, 77, 76, 101, 71, 44, 20, 28, 27, 9)(16, 90, 120, 97, 96, 117, 116, 93, 61, 88, 51, 34, 33, 26, 25, 72, 98, 119, 118, 95, 94, 115, 89, 60, 35, 50, 49, 17)(21, 43, 42, 41, 40, 39, 22)(30, 69, 68, 67, 66, 65, 37, 36, 59, 58, 57, 56, 55, 31)(52, 87, 86, 85, 84, 83, 53)(141, 264, 271, 213, 201, 216, 192, 169, 225, 151, 163, 143, 195, 266, 259, 178, 251, 190, 147, 233, 204, 154, 215, 212, 221, 261, 183, 249)(142, 174, 243, 232, 241, 168, 199, 206, 230, 253, 223, 250, 218, 175)(144, 234, 246, 167, 242, 180, 219, 254, 226, 247, 229, 211, 196, 173)(145, 208, 255, 150, 245, 252, 146, 274, 222, 210, 184, 157, 203, 231, 256, 237, 227, 179, 276, 279, 200, 177, 165, 160, 224, 172, 240, 189)(148, 159, 182, 217, 164, 187, 235, 152, 193, 149, 260, 278, 273, 267)(153, 181, 188, 220, 269, 185, 268, 162, 263, 258, 191, 277, 156, 270)(155, 280, 238, 272, 186, 161, 265, 214, 275, 194, 262, 236, 158, 257)(166, 228, 248, 244, 176, 205, 209, 198, 171, 239, 170, 197, 207, 202)
e: (3, 15)(4, 24)(6, 7)(8, 29)(9, 19)(10, 11)(12, 20)(13, 28)(16, 51)(17, 34)(18, 27)(21, 43)(22, 42)(23, 47)(25, 35)(26, 50)(30, 59)(31, 58)(32, 63)(33, 49)(36, 69)(37, 68)(38, 73)(39, 41)(44, 46)(45, 106)(48, 99)(52, 87)(53, 86)(54, 91)(55, 57)(60, 72)(61, 120)(62, 70)(64, 81)(65, 67)(71, 80)(74, 121)(75, 79)(76, 104)(78, 102)(82, 109)(83, 85)(88, 90)(89, 98)(92, 107)(93, 97)(94, 118)(96, 116)(100, 129)(101, 105)(108, 123)(110, 128)(111, 113)(112, 126)(114, 124)(115, 119)(122, 135)(125, 127)(130, 140)(131, 133)(132, 138)(134, 136)(137, 139)(141, 189)(142, 173)(143, 227)(144, 175)(145, 249)(146, 154)(147, 210)(148, 217)(149, 193)(150, 221)(151, 276)(152, 260)(153, 214)(155, 162)(156, 194)(157, 251)(158, 258)(159, 182)(160, 201)(161, 188)(163, 179)(164, 267)(165, 216)(166, 202)(167, 223)(168, 226)(169, 200)(170, 244)(171, 205)(172, 271)(174, 196)(176, 239)(177, 192)(178, 203)(180, 230)(181, 265)(183, 208)(184, 190)(185, 238)(186, 220)(187, 273)(191, 236)(195, 237)(197, 248)(198, 209)(199, 254)(204, 274)(206, 219)(207, 228)(211, 243)(212, 245)(213, 224)(215, 252)(218, 234)(222, 233)(225, 279)(229, 232)(231, 259)(235, 278)(240, 264)(241, 247)(242, 253)(246, 250)(255, 261)(256, 266)(257, 263)(262, 277)(268, 280)(269, 272)(270, 275)
f: (8, 16)(12, 25)(18, 33)(20, 35)(21, 30)(22, 37)(27, 49)(29, 51)(31, 53)(36, 52)(39, 55)(40, 66)(41, 57)(42, 68)(43, 59)(45, 61)(56, 84)(58, 86)(65, 83)(67, 85)(69, 87)(71, 89)(76, 94)(78, 96)(80, 98)(102, 116)(104, 118)(106, 120)(142, 258)(155, 234)(158, 173)(162, 218)(167, 238)(180, 186)(181, 199)(185, 223)(211, 262)(220, 230)(241, 270)(243, 277)(247, 275)(254, 265)
g: (1, 2)(5, 14)(9, 13)(17, 26)(19, 28)(23, 38)(32, 54)(34, 50)(44, 70)(46, 62)(47, 73)(60, 88)(63, 91)(72, 90)(75, 101)(77, 103)(79, 105)(82, 108)(93, 115)(95, 117)(97, 119)(100, 122)(109, 123)(111, 125)(113, 127)(129, 135)(131, 137)(133, 139)(143, 261)(145, 256)(146, 200)(151, 212)(154, 169)(165, 222)(178, 264)(184, 224)(190, 213)(203, 240)(216, 233)(227, 255)(245, 276)(249, 266)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 280, 22 ]
280
-1 143 166 202 227
-2 166 255 202 261
-3 166 179 195 228
-4 179 149 260 195
-5 143 149 193 227
-6 166 150 183 228
-7 221 202 207 208
-8 179 180 141 218
-9 242 227 249 250
-10 149 150 183 260
-11 221 193 152 208
-12 180 259 150 218
-13 242 255 266 250
-14 255 149 193 261
-15 202 237 163 207
-16 179 162 141 186
-17 268 227 249 272
-18 167 223 195 208
-19 143 253 145 246
-20 231 221 234 230
-21 180 206 196 142
-22 242 199 211 175
-23 245 248 249 228
-24 193 237 152 163
-25 259 150 162 186
-26 255 266 268 272
-27 167 223 237 183
-28 253 256 246 261
-29 189 234 163 230
-30 258 206 196 186
-31 199 211 272 263
-32 245 278 249 260
-33 238 195 185 208
-34 143 145 269 280
-35 220 231 155 221
-36 188 180 236 142
-37 242 181 262 175
-38 276 266 248 228
-39 167 168 218 229
-40 246 247 250 241
-41 232 223 234 226
-42 253 144 243 254
-43 173 174 219 230
-44 144 212 203 206
-45 199 225 172 173
-46 178 245 175 219
-47 145 212 207 197
-48 244 248 141 252
-49 237 183 238 185
-50 256 269 280 261
-51 220 155 189 163
-52 188 236 258 186
-53 181 272 262 263
-54 276 266 278 260
-55 168 238 162 229
-56 268 247 280 241
-57 155 232 226 185
-58 243 254 257 269
-59 220 158 174 219
-60 188 212 257 203
-61 158 181 225 172
-62 264 276 175 219
-63 145 212 235 152
-64 244 279 248 259
-65 167 194 218 153
-66 275 246 270 250
-67 156 223 234 214
-68 253 144 265 277
-69 191 161 173 230
-70 144 151 206 240
-71 199 157 215 173
-72 178 245 161 263
-73 256 151 207 197
-74 278 141 273 252
-75 168 169 224 196
-76 210 211 204 241
-77 232 222 233 229
-78 177 243 201 247
-79 200 213 226 174
-80 254 251 142 252
-81 231 170 225 197
-82 176 178 200 244
-83 194 238 162 153
-84 275 268 280 270
-85 155 156 214 185
-86 265 277 257 269
-87 220 158 191 161
-88 188 257 151 240
-89 157 158 181 215
-90 264 276 161 263
-91 256 235 151 152
-92 278 279 259 273
-93 169 224 236 153
-94 210 204 270 262
-95 156 222 233 194
-96 275 177 277 201
-97 200 191 213 214
-98 265 258 251 252
-99 189 170 215 197
-100 178 200 267 273
-101 154 168 184 196
-102 211 192 160 241
-103 165 232 216 229
-104 243 147 247 274
-105 146 190 226 174
-106 254 279 271 142
-107 187 231 235 225
-108 176 264 244 146
-109 169 170 203 239
-110 171 204 172 239
-111 198 233 224 171
-112 198 209 210 201
-113 209 222 213 205
-114 176 177 205 251
-115 154 236 184 153
-116 192 160 270 262
-117 165 156 194 216
-118 275 277 147 274
-119 146 190 191 214
-120 265 279 258 271
-121 187 189 235 215
-122 264 146 267 273
-123 154 170 239 240
-124 157 192 171 239
-125 198 171 216 184
-126 198 209 147 160
-127 165 209 190 205
-128 176 205 271 274
-129 187 169 203 164
-130 204 172 217 164
-131 233 224 182 217
-132 210 201 159 182
-133 222 213 148 159
-134 177 267 148 251
-135 154 187 240 164
-136 157 192 217 164
-137 182 216 184 217
-138 147 159 160 182
-139 165 190 148 159
-140 267 148 271 274
-141 48 16 8 74
-142 36 80 106 21
-143 1 34 5 19
-144 44 68 70 42
-145 34 47 19 63
-146 122 105 108 119
-147 104 126 138 118
-148 133 134 139 140
-149 14 4 5 10
-150 12 25 6 10
-151 88 91 70 73
-152 11 24 91 63
-153 93 115 83 65
-154 101 123 135 115
-155 35 57 51 85
-156 67 95 117 85
-157 89 124 136 71
-158 89 59 61 87
-159 132 133 138 139
-160 102 126 116 138
-161 90 69 72 87
-162 55 25 16 83
-163 24 15 29 51
-164 135 136 129 130
-165 103 127 117 139
-166 1 2 3 6
-167 27 39 18 65
-168 55 101 39 75
-169 93 129 75 109
-170 99 123 81 109
-171 110 111 124 125
-172 110 45 61 130
-173 45 69 71 43
-174 79 59 105 43
-175 22 46 37 62
-176 114 82 128 108
-177 78 134 114 96
-178 100 46 82 72
-179 3 4 16 8
-180 12 36 8 21
-181 89 37 61 53
-182 132 137 138 131
-183 27 49 6 10
-184 101 125 115 137
-185 33 57 49 85
-186 25 16 30 52
-187 121 135 107 129
-188 88 36 60 52
-189 99 121 29 51
-190 105 127 139 119
-191 69 97 119 87
-192 102 124 136 116
-193 11 24 14 5
-194 83 95 117 65
-195 33 3 4 18
-196 101 30 75 21
-197 99 47 81 73
-198 111 112 125 126
-199 22 45 71 31
-200 100 79 82 97
-201 132 78 112 96
-202 1 2 15 7
-203 44 60 129 109
-204 110 94 130 76
-205 113 114 127 128
-206 44 70 30 21
-207 47 15 7 73
-208 11 33 7 18
-209 112 113 126 127
-210 132 112 94 76
-211 22 102 31 76
-212 44 47 60 63
-213 133 79 113 97
-214 67 85 97 119
-215 99 121 89 71
-216 103 125 137 117
-217 136 137 130 131
-218 12 39 8 65
-219 46 59 62 43
-220 35 59 51 87
-221 11 35 7 20
-222 77 133 113 95
-223 67 27 18 41
-224 111 93 75 131
-225 45 81 61 107
-226 57 79 105 41
-227 1 5 17 9
-228 23 3 38 6
-229 55 77 103 39
-230 69 29 20 43
-231 35 81 107 20
-232 77 57 103 41
-233 77 111 95 131
-234 67 29 41 20
-235 121 91 63 107
-236 36 93 115 52
-237 24 15 27 49
-238 33 55 49 83
-239 110 123 124 109
-240 88 123 135 70
-241 56 102 40 76
-242 22 13 37 9
-243 78 58 104 42
-244 48 82 64 108
-245 23 46 72 32
-246 66 28 40 19
-247 56 78 104 40
-248 23 48 38 64
-249 23 17 9 32
-250 66 13 40 9
-251 134 80 114 98
-252 80 48 74 98
-253 68 28 19 42
-254 58 80 106 42
-255 2 13 14 26
-256 91 28 50 73
-257 88 58 60 86
-258 30 52 98 120
-259 12 25 92 64
-260 4 10 32 54
-261 2 14 28 50
-262 37 94 116 53
-263 90 72 31 53
-264 122 90 62 108
-265 68 86 98 120
-266 13 26 38 54
-267 100 122 134 140
-268 56 26 17 84
-269 34 58 50 86
-270 66 94 116 84
-271 106 128 140 120
-272 26 17 31 53
-273 100 122 92 74
-274 104 128 118 140
-275 66 84 96 118
-276 90 38 62 54
-277 68 96 118 86
-278 92 74 32 54
-279 92 106 64 120
-280 34 56 50 84
0

**************