C4graphGraph forms for C4 [ 280, 29 ] = SDD(C_70(1,29))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 280, 29 ] = SDD(C_70(1,29)).

(I) Following is a form readable by MAGMA:

g:=Graph<280|{ {138, 142}, {139, 143}, {139, 142}, {139, 141}, {128, 141}, {138, 154}, {128, 145}, {128, 148}, {131, 150}, {140, 155}, {139, 146}, {131, 159}, {128, 157}, {140, 145}, {131, 166}, {136, 175}, {138, 163}, {135, 173}, {134, 170}, {129, 174}, {138, 187}, {130, 177}, {129, 183}, {140, 180}, {131, 190}, {135, 185}, {130, 198}, {134, 193}, {134, 206}, {130, 210}, {137, 216}, {136, 220}, {129, 216}, {132, 218}, {132, 219}, {135, 231}, {136, 233}, {137, 234}, {129, 232}, {133, 239}, {140, 225}, {133, 241}, {134, 242}, {130, 245}, {33, 161}, {109, 237}, {98, 226}, {97, 225}, {34, 162}, {63, 191}, {64, 192}, {67, 195}, {36, 165}, {53, 180}, {30, 156}, {108, 238}, {107, 233}, {105, 235}, {37, 167}, {31, 157}, {62, 188}, {91, 217}, {62, 189}, {79, 204}, {40, 172}, {60, 184}, {43, 175}, {42, 174}, {41, 173}, {65, 197}, {66, 198}, {67, 199}, {100, 225}, {118, 243}, {16, 150}, {48, 182}, {17, 151}, {61, 187}, {68, 194}, {73, 207}, {80, 214}, {81, 215}, {29, 154}, {123, 252}, {120, 255}, {104, 239}, {35, 164}, {106, 226}, {124, 244}, {117, 253}, {37, 172}, {102, 239}, {4, 142}, {19, 153}, {18, 152}, {5, 143}, {70, 204}, {82, 216}, {90, 208}, {52, 191}, {85, 222}, {1, 141}, {39, 171}, {68, 200}, {81, 221}, {1, 143}, {69, 203}, {80, 222}, {1, 142}, {126, 241}, {103, 232}, {38, 169}, {2, 141}, {71, 200}, {72, 199}, {84, 219}, {3, 147}, {41, 185}, {11, 155}, {7, 150}, {110, 255}, {9, 152}, {13, 159}, {1, 146}, {52, 167}, {10, 153}, {3, 144}, {2, 145}, {52, 160}, {96, 244}, {71, 211}, {91, 207}, {47, 186}, {2, 148}, {6, 144}, {3, 149}, {45, 186}, {117, 226}, {46, 185}, {72, 223}, {77, 218}, {7, 159}, {104, 241}, {105, 240}, {6, 156}, {100, 254}, {15, 149}, {14, 148}, {11, 145}, {74, 208}, {75, 209}, {78, 213}, {94, 197}, {44, 176}, {73, 213}, {74, 214}, {75, 215}, {81, 205}, {3, 158}, {107, 246}, {46, 179}, {42, 183}, {4, 154}, {103, 249}, {101, 251}, {32, 190}, {13, 147}, {12, 146}, {5, 155}, {76, 210}, {77, 211}, {2, 157}, {106, 245}, {98, 253}, {97, 254}, {59, 164}, {58, 165}, {45, 178}, {8, 151}, {16, 176}, {116, 212}, {5, 164}, {124, 221}, {19, 178}, {18, 179}, {9, 168}, {7, 166}, {83, 242}, {84, 246}, {89, 251}, {6, 165}, {52, 151}, {10, 169}, {9, 170}, {92, 255}, {64, 228}, {113, 213}, {109, 201}, {96, 196}, {94, 250}, {48, 149}, {85, 243}, {108, 202}, {4, 163}, {16, 183}, {8, 160}, {118, 222}, {30, 182}, {29, 181}, {10, 162}, {9, 161}, {17, 184}, {27, 178}, {19, 186}, {66, 235}, {90, 243}, {27, 177}, {18, 185}, {26, 177}, {73, 229}, {14, 163}, {102, 203}, {77, 227}, {119, 217}, {101, 203}, {8, 167}, {111, 192}, {105, 198}, {28, 179}, {65, 238}, {94, 238}, {116, 196}, {114, 194}, {107, 219}, {22, 167}, {99, 210}, {96, 209}, {71, 246}, {66, 240}, {74, 249}, {126, 205}, {114, 193}, {75, 248}, {79, 252}, {45, 153}, {67, 247}, {21, 160}, {83, 230}, {89, 236}, {24, 174}, {46, 152}, {25, 175}, {80, 230}, {86, 224}, {8, 191}, {82, 234}, {103, 223}, {5, 188}, {119, 206}, {15, 182}, {12, 181}, {7, 190}, {92, 229}, {22, 172}, {23, 173}, {70, 252}, {89, 227}, {6, 189}, {65, 250}, {86, 237}, {92, 231}, {68, 248}, {121, 197}, {86, 234}, {74, 247}, {84, 233}, {20, 170}, {32, 158}, {24, 166}, {21, 171}, {69, 251}, {4, 187}, {23, 168}, {11, 180}, {48, 240}, {37, 228}, {116, 181}, {95, 158}, {56, 249}, {44, 237}, {38, 231}, {42, 232}, {127, 189}, {46, 236}, {43, 233}, {15, 204}, {127, 188}, {57, 250}, {38, 229}, {88, 155}, {27, 223}, {58, 254}, {89, 157}, {12, 201}, {123, 190}, {102, 163}, {14, 203}, {44, 234}, {126, 184}, {111, 169}, {59, 253}, {49, 247}, {45, 235}, {13, 202}, {124, 187}, {87, 144}, {24, 208}, {49, 249}, {26, 210}, {25, 209}, {29, 212}, {121, 176}, {61, 244}, {10, 192}, {95, 149}, {50, 248}, {47, 229}, {87, 156}, {44, 224}, {95, 147}, {55, 250}, {111, 162}, {63, 242}, {23, 217}, {121, 183}, {41, 231}, {40, 230}, {28, 211}, {96, 175}, {95, 144}, {56, 232}, {112, 161}, {114, 160}, {21, 193}, {28, 200}, {16, 197}, {34, 247}, {22, 195}, {20, 193}, {53, 227}, {21, 194}, {55, 224}, {88, 143}, {23, 207}, {112, 168}, {109, 181}, {60, 228}, {29, 196}, {114, 171}, {57, 224}, {38, 255}, {33, 248}, {63, 230}, {20, 206}, {112, 170}, {36, 254}, {17, 205}, {106, 182}, {32, 252}, {27, 199}, {26, 198}, {25, 196}, {35, 253}, {17, 241}, {47, 207}, {61, 221}, {12, 237}, {49, 208}, {34, 195}, {14, 239}, {67, 162}, {13, 238}, {55, 212}, {50, 209}, {33, 194}, {31, 251}, {88, 188}, {34, 199}, {123, 158}, {57, 220}, {50, 215}, {68, 161}, {20, 242}, {53, 211}, {37, 195}, {86, 176}, {49, 214}, {56, 223}, {112, 152}, {33, 200}, {126, 151}, {11, 225}, {51, 217}, {39, 205}, {35, 201}, {28, 246}, {87, 189}, {24, 243}, {55, 220}, {30, 245}, {54, 218}, {83, 191}, {25, 244}, {57, 212}, {54, 219}, {36, 202}, {116, 154}, {26, 245}, {121, 150}, {53, 218}, {39, 215}, {58, 202}, {22, 228}, {102, 148}, {59, 201}, {42, 216}, {87, 165}, {31, 236}, {108, 159}, {73, 186}, {91, 168}, {71, 179}, {90, 174}, {92, 169}, {40, 222}, {111, 153}, {106, 156}, {91, 173}, {43, 220}, {19, 235}, {64, 184}, {72, 177}, {77, 180}, {39, 221}, {47, 213}, {72, 178}, {81, 171}, {30, 226}, {60, 192}, {48, 204}, {31, 227}, {80, 172}, {88, 164}, {90, 166}, {51, 206}, {18, 236}, {40, 214}, {15, 240}, {109, 146}, {108, 147}, {36, 261}, {41, 269}, {51, 277}, {61, 273}, {59, 276}, {60, 268}, {62, 270}, {54, 263}, {32, 275}, {51, 256}, {62, 267}, {35, 276}, {54, 257}, {63, 262}, {56, 258}, {43, 272}, {50, 271}, {58, 261}, {66, 259}, {70, 260}, {75, 271}, {76, 264}, {76, 265}, {79, 266}, {82, 276}, {85, 275}, {85, 274}, {69, 269}, {94, 278}, {78, 260}, {79, 260}, {93, 278}, {64, 268}, {70, 266}, {78, 259}, {93, 272}, {76, 258}, {78, 256}, {69, 279}, {83, 262}, {65, 278}, {93, 261}, {82, 265}, {84, 271}, {93, 257}, {120, 280}, {99, 258}, {110, 268}, {119, 277}, {100, 263}, {115, 272}, {107, 271}, {118, 274}, {103, 258}, {118, 275}, {115, 278}, {97, 263}, {101, 269}, {125, 277}, {123, 275}, {122, 274}, {97, 267}, {105, 259}, {99, 265}, {98, 264}, {99, 264}, {98, 270}, {124, 273}, {100, 267}, {125, 274}, {122, 277}, {120, 279}, {104, 280}, {122, 266}, {113, 256}, {127, 270}, {101, 279}, {115, 257}, {113, 259}, {120, 268}, {127, 267}, {113, 260}, {110, 280}, {115, 261}, {119, 256}, {125, 266}, {104, 273}, {110, 279}, {117, 270}, {125, 262}, {122, 262}, {117, 264}, {137, 265}, {132, 263}, {132, 257}, {135, 269}, {133, 273}, {136, 272}, {133, 280}, {137, 276} }>;

(II) A more general form is to represent the graph as the orbit of {138, 142} under the group generated by the following permutations:

a: (14, 102)
b: (63, 83)
c: (56, 103)
d: (104, 133)
e: (9, 112)
f: (110, 120)
g: (18, 46)
h: (2, 128)
m: (65, 94)
n1: (55, 57)
a1: (10, 111)
b1: (62, 127)
c1: (42, 129)
d1: (34, 67)
e1: (3, 95)
f1: (7, 131)
g1: (85, 118)
h1: (15, 48)
m1: (28, 71)
n2: (33, 68)
a2: (54, 132)
b2: (40, 80)
c2: (61, 124)
d2: (76, 99)
e2: (82, 137)
f2: (36, 58)
g2: (25, 96)
h2: (44, 86)
m2: (43, 136)
n3: (39, 81)
a3: (31, 89)
b3: (38, 92)
c3: (32, 123)
d3: (53, 77)
e3: (50, 75)
f3: (20, 134)
g3: (4, 138)
h3: (51, 119)
m3: (60, 64)
n4: (6, 87)
a4: (1, 2)(3, 8)(4, 11)(5, 14)(6, 17)(7, 20)(9, 16)(10, 26)(12, 31)(13, 21)(15, 22)(18, 44)(19, 27)(23, 42)(24, 51)(25, 54)(28, 55)(29, 53)(30, 60)(32, 63)(33, 65)(34, 66)(35, 69)(36, 39)(37, 48)(38, 76)(40, 70)(41, 82)(43, 84)(45, 72)(46, 86)(47, 56)(49, 78)(50, 93)(52, 95)(57, 71)(58, 81)(59, 101)(61, 97)(62, 104)(64, 106)(67, 105)(68, 94)(73, 103)(74, 113)(75, 115)(77, 116)(79, 80)(83, 123)(85, 122)(87, 126)(88, 102)(89, 109)(90, 119)(91, 129)(92, 99)(96, 132)(98, 110)(100, 124)(107, 136)(108, 114)(111, 130)(112, 121)(117, 120)(118, 125)(127, 133)(128, 139)(131, 134)(135, 137)(138, 140)(142, 145)(143, 148)(144, 151)(146, 157)(147, 160)(149, 167)(150, 170)(152, 176)(153, 177)(154, 180)(155, 163)(156, 184)(158, 191)(159, 193)(161, 197)(162, 198)(164, 203)(165, 205)(166, 206)(168, 183)(169, 210)(171, 202)(172, 204)(173, 216)(174, 217)(175, 219)(179, 224)(181, 227)(182, 228)(185, 234)(186, 223)(187, 225)(188, 239)(189, 241)(190, 242)(192, 245)(194, 238)(195, 240)(196, 218)(199, 235)(200, 250)(201, 251)(207, 232)(208, 256)(209, 257)(211, 212)(213, 249)(214, 260)(215, 261)(220, 246)(221, 254)(222, 266)(226, 268)(229, 258)(230, 252)(231, 265)(236, 237)(243, 277)(244, 263)(247, 259)(248, 278)(253, 279)(255, 264)(262, 275)(267, 273)(269, 276)(270, 280)(271, 272)
b4: (35, 59)
c4: (84, 107)
d4: (41, 135)
e4: (22, 37)
f4: (69, 101)
g4: (93, 115)
h4: (11, 140)
m4: (19, 45)
n5: (98, 117)
a5: (2, 5)(3, 9)(4, 12)(6, 18)(7, 21)(8, 24)(10, 27)(13, 33)(14, 35)(15, 23)(16, 39)(17, 42)(20, 32)(22, 49)(25, 55)(26, 38)(28, 36)(30, 41)(31, 62)(37, 74)(44, 61)(46, 87)(47, 66)(48, 91)(50, 65)(51, 70)(52, 90)(53, 97)(56, 60)(57, 96)(58, 71)(59, 102)(63, 85)(64, 103)(68, 108)(69, 98)(72, 111)(73, 105)(75, 94)(76, 110)(77, 100)(79, 119)(81, 121)(82, 104)(83, 118)(84, 93)(86, 124)(88, 128)(89, 127)(92, 130)(95, 112)(99, 120)(101, 117)(106, 135)(107, 115)(109, 138)(114, 131)(123, 134)(126, 129)(133, 137)(141, 143)(142, 146)(144, 152)(145, 155)(147, 161)(148, 164)(149, 168)(150, 171)(151, 174)(153, 178)(154, 181)(156, 185)(157, 188)(158, 170)(159, 194)(160, 166)(162, 199)(163, 201)(165, 179)(167, 208)(169, 177)(172, 214)(173, 182)(175, 220)(176, 221)(180, 225)(183, 205)(184, 232)(186, 235)(187, 237)(189, 236)(190, 193)(191, 243)(192, 223)(195, 247)(196, 212)(197, 215)(198, 229)(200, 202)(203, 253)(204, 217)(206, 252)(207, 240)(209, 250)(210, 255)(211, 254)(213, 259)(216, 241)(218, 263)(219, 257)(222, 230)(224, 244)(226, 269)(227, 267)(228, 249)(231, 245)(233, 272)(234, 273)(238, 248)(239, 276)(242, 275)(246, 261)(251, 270)(256, 260)(258, 268)(262, 274)(264, 279)(265, 280)(266, 277)(271, 278)
b5: (30, 106)
c5: (2, 4)(3, 7)(5, 12)(6, 16)(8, 23)(9, 21)(11, 29)(15, 24)(17, 41)(18, 39)(19, 34)(22, 47)(25, 53)(26, 56)(28, 50)(30, 42)(31, 61)(36, 65)(37, 73)(38, 60)(40, 78)(43, 54)(44, 62)(45, 67)(46, 81)(48, 90)(49, 66)(51, 63)(52, 91)(55, 97)(57, 100)(58, 94)(64, 92)(69, 104)(70, 85)(71, 75)(74, 105)(77, 96)(79, 118)(80, 113)(82, 98)(83, 119)(86, 127)(87, 121)(88, 109)(89, 124)(95, 131)(101, 133)(103, 130)(106, 129)(112, 114)(116, 140)(117, 137)(126, 135)(128, 138)(132, 136)(141, 142)(143, 146)(144, 150)(145, 154)(147, 159)(148, 163)(149, 166)(151, 173)(152, 171)(153, 162)(155, 181)(156, 183)(157, 187)(158, 190)(160, 168)(161, 194)(164, 201)(165, 197)(167, 207)(169, 192)(170, 193)(172, 213)(174, 182)(175, 218)(176, 189)(177, 223)(178, 199)(179, 215)(180, 196)(184, 231)(185, 205)(186, 195)(188, 237)(191, 217)(198, 249)(200, 248)(202, 238)(203, 239)(204, 243)(206, 242)(208, 240)(209, 211)(210, 258)(212, 225)(214, 259)(216, 226)(219, 233)(220, 263)(221, 236)(222, 260)(224, 267)(227, 244)(228, 229)(230, 256)(232, 245)(234, 270)(235, 247)(241, 269)(246, 271)(250, 254)(251, 273)(252, 275)(253, 276)(255, 268)(257, 272)(261, 278)(262, 277)(264, 265)(266, 274)(279, 280)
d5: (27, 72)
e5: (16, 121)
f5: (47, 73)
g5: (49, 74)
h5: (12, 109)
m5: (13, 108)
n6: (70, 79)
a6: (23, 91)
b6: (122, 125)
c6: (17, 126)
d6: (21, 114)
e6: (66, 105)
f6: (5, 88)
g6: (29, 116)
h6: (24, 90)
m6: (97, 100)
n7: (8, 52)
a7: (78, 113)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 280, 29 ]
280
-1 143 146 141 142
-2 145 157 148 141
-3 144 147 158 149
-4 154 187 163 142
-5 143 155 188 164
-6 165 144 156 189
-7 166 190 159 150
-8 167 191 160 151
-9 168 170 161 152
-10 169 192 162 153
-11 155 145 180 225
-12 146 201 181 237
-13 147 202 159 238
-14 148 203 239 163
-15 149 182 204 240
-16 176 150 183 197
-17 205 151 184 241
-18 179 236 152 185
-19 178 235 153 186
-20 242 170 193 206
-21 160 171 193 194
-22 167 172 195 228
-23 168 173 217 207
-24 166 243 174 208
-25 209 244 196 175
-26 198 177 210 245
-27 177 199 178 223
-28 200 211 179 246
-29 154 212 181 196
-30 156 245 182 226
-31 157 236 227 251
-32 275 190 158 252
-33 200 248 161 194
-34 199 247 162 195
-35 253 276 201 164
-36 165 254 202 261
-37 167 172 195 228
-38 231 255 169 229
-39 221 171 215 205
-40 222 214 172 230
-41 231 269 173 185
-42 232 183 216 174
-43 220 233 272 175
-44 176 234 224 237
-45 178 235 153 186
-46 179 236 152 185
-47 213 207 229 186
-48 149 182 204 240
-49 214 247 249 208
-50 209 215 248 271
-51 277 256 206 217
-52 167 191 160 151
-53 211 180 227 218
-54 257 218 219 263
-55 220 212 224 250
-56 232 223 258 249
-57 220 212 224 250
-58 165 254 202 261
-59 253 276 201 164
-60 268 192 184 228
-61 187 221 244 273
-62 188 189 267 270
-63 242 191 262 230
-64 268 192 184 228
-65 278 238 250 197
-66 198 235 259 240
-67 199 247 162 195
-68 200 248 161 194
-69 279 203 269 251
-70 266 204 260 252
-71 200 211 179 246
-72 177 199 178 223
-73 213 207 229 186
-74 214 247 249 208
-75 209 215 248 271
-76 264 210 265 258
-77 211 180 227 218
-78 256 213 259 260
-79 266 204 260 252
-80 222 214 172 230
-81 221 171 215 205
-82 265 276 234 216
-83 242 191 262 230
-84 233 246 271 219
-85 275 243 222 274
-86 176 234 224 237
-87 165 144 156 189
-88 143 155 188 164
-89 157 236 227 251
-90 166 243 174 208
-91 168 173 217 207
-92 231 255 169 229
-93 278 257 261 272
-94 278 238 250 197
-95 144 147 158 149
-96 209 244 196 175
-97 254 267 225 263
-98 253 264 226 270
-99 264 210 265 258
-100 254 267 225 263
-101 279 203 269 251
-102 148 203 239 163
-103 232 223 258 249
-104 280 239 273 241
-105 198 235 259 240
-106 156 245 182 226
-107 233 246 271 219
-108 147 202 159 238
-109 146 201 181 237
-110 255 268 279 280
-111 169 192 162 153
-112 168 170 161 152
-113 256 213 259 260
-114 160 171 193 194
-115 278 257 261 272
-116 154 212 181 196
-117 253 264 226 270
-118 275 243 222 274
-119 277 256 206 217
-120 255 268 279 280
-121 176 150 183 197
-122 266 277 262 274
-123 275 190 158 252
-124 187 221 244 273
-125 266 277 262 274
-126 205 151 184 241
-127 188 189 267 270
-128 145 157 148 141
-129 232 183 216 174
-130 198 177 210 245
-131 166 190 159 150
-132 257 218 219 263
-133 280 239 273 241
-134 242 170 193 206
-135 231 269 173 185
-136 220 233 272 175
-137 265 276 234 216
-138 154 187 163 142
-139 143 146 141 142
-140 155 145 180 225
-141 1 2 128 139
-142 1 4 138 139
-143 88 1 5 139
-144 3 6 95 87
-145 11 2 128 140
-146 1 12 139 109
-147 13 3 95 108
-148 2 14 102 128
-149 3 15 48 95
-150 121 16 7 131
-151 126 17 8 52
-152 46 112 18 9
-153 45 111 19 10
-154 4 116 138 29
-155 11 88 5 140
-156 6 106 30 87
-157 89 2 128 31
-158 123 3 95 32
-159 13 7 108 131
-160 114 8 52 21
-161 33 68 112 9
-162 34 67 111 10
-163 14 102 4 138
-164 88 35 59 5
-165 36 58 6 87
-166 24 90 7 131
-167 22 37 8 52
-168 23 112 91 9
-169 111 92 38 10
-170 112 134 9 20
-171 81 114 39 21
-172 22 80 37 40
-173 23 91 135 41
-174 24 90 129 42
-175 25 136 96 43
-176 44 121 16 86
-177 26 27 72 130
-178 45 27 72 19
-179 46 71 28 18
-180 11 77 140 53
-181 12 116 29 109
-182 15 48 106 30
-183 121 16 129 42
-184 60 126 17 64
-185 46 135 18 41
-186 45 47 73 19
-187 124 4 61 138
-188 88 5 127 62
-189 6 127 62 87
-190 123 7 32 131
-191 83 8 52 63
-192 111 60 64 10
-193 134 114 20 21
-194 33 68 114 21
-195 22 34 67 37
-196 25 116 29 96
-197 121 16 94 65
-198 66 26 105 130
-199 34 67 27 72
-200 33 68 71 28
-201 12 35 59 109
-202 13 36 58 108
-203 101 14 69 102
-204 79 15 48 70
-205 81 126 17 39
-206 134 51 20 119
-207 23 47 91 73
-208 24 90 49 74
-209 25 50 96 75
-210 99 26 130 76
-211 77 71 28 53
-212 55 57 116 29
-213 78 47 113 73
-214 80 49 40 74
-215 81 39 50 75
-216 82 137 129 42
-217 23 91 51 119
-218 77 132 53 54
-219 132 84 107 54
-220 55 57 136 43
-221 124 81 39 61
-222 80 40 85 118
-223 56 103 27 72
-224 44 55 57 86
-225 11 100 140 97
-226 106 117 30 98
-227 77 89 31 53
-228 22 37 60 64
-229 47 92 38 73
-230 80 83 40 63
-231 135 92 38 41
-232 56 103 129 42
-233 136 84 107 43
-234 44 82 137 86
-235 66 45 105 19
-236 89 46 18 31
-237 44 12 86 109
-238 13 94 108 65
-239 133 14 102 104
-240 66 15 48 105
-241 133 104 126 17
-242 134 83 63 20
-243 24 90 85 118
-244 25 124 61 96
-245 26 106 30 130
-246 71 28 84 107
-247 34 67 49 74
-248 33 68 50 75
-249 56 103 49 74
-250 55 57 94 65
-251 89 101 69 31
-252 79 123 70 32
-253 35 59 117 98
-254 100 36 58 97
-255 110 92 38 120
-256 78 113 51 119
-257 132 93 115 54
-258 99 56 103 76
-259 66 78 113 105
-260 78 79 113 70
-261 36 58 93 115
-262 122 125 83 63
-263 132 100 97 54
-264 99 117 76 98
-265 99 82 137 76
-266 122 79 70 125
-267 100 127 62 97
-268 110 60 64 120
-269 101 69 135 41
-270 127 62 117 98
-271 50 84 107 75
-272 136 93 115 43
-273 133 124 104 61
-274 122 125 85 118
-275 123 85 118 32
-276 35 59 82 137
-277 122 125 51 119
-278 93 115 94 65
-279 110 101 69 120
-280 110 133 104 120
0

**************